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Chapter 1 
Mechanism 

The Newtonian View 

  
  In the first volume of this book, I dealt with energy in three forms: motion (kinetic energy), sound, and heat. As it turned 
out, sound and heat are forms of kinetic energy after all. In the case of sound, the atoms and molecules making up the air, 
or any other medium through which sound travels, move back and forth in an orderly manner. In this way, waves of 
compression and rarefaction spread out at a fixed velocity (see page I-156).' Heat, on the other hand, is associated with 
the random movement of the atoms and molecules making up any substance. The greater the average velocity of such 
movement, the greater the intensity of heat. 
  
 By the mid-nineteenth century the Scottish physicist James Clerk Maxwell (1831-1879) and the Austrian physicist 
Ludwig Boltzmann (1844-1906) had worked out, in strict detail, the interpretation of heat as random molecular 
movement (the "kinetic theory of heat"). It then became more tempting than ever to suspect that all phenomena in the 
universe could be analyzed as being based on matter in motion.   
  
According to this view, one might picture the universe as consisting of a vast number of parts each part, if moving, 
affecting those neighboring parts with which it makes contact. This is exactly what we see, for instance, in a machine like 
an ordinary clock. One part of the clock affects another by the force of an expanding spring; by moving, interlocking 



gears; by levers; in short, by physical interconnections of all kinds. In other machines, such inter connections might 
consist of endless belts, pulleys, jets of water, and so on. On the submicroscopic scale it is atoms and molecules that are 
in motion, and these interact by pushing each other when they collide. On the cosmic scale, it is the planets and stars that 
are in motion, and these interact with each other through gravitational influence.   
  
    From the vast universe down to the tiniest components thereof, all might be looked on as obeying the same laws of 
mechanics by physical interaction as do the familiar machines of everyday life. This is the philosophy of mechanism, or 
the mechanistic interpretation of the universe. (Gravitational influence does not quite fit this view, as I shall point out 
shortly.)   
  
    The interactions of matter in motion obey, first of all, the three laws of motion propounded by Isaac Newton (1642-
1727) in 1687, and the law of universal gravitation that he also propounded. The mechanistic view of the universe may 
therefore be spoken of, fairly enough, as the "Newtonian view of the universe."   
  
    The entire first volume of this book is devoted to the Newtonian view. It carries matter to the mid-nineteenth century, 
when this view had overcome all obstacles and had gained strength until it seemed, indeed, triumphant and unshakable.   
  
    In the first half of the nineteenth century, for instance, it had been found that Uranus traveled in its orbit in a way that 
could not be quite accounted for by Newton's law of universal gravitation. The discrepancy between Uranus’s actual 
position in the 1 840's and the one it was expected to have was tiny; nevertheless the mere existence of that discrepancy 
threatened to destroy the Newtonian fabric.   
  
    Two young astronomers, the Englishman John Couch Adams (1819-1892) and the Frenchman Urbain Jean Joseph 
Leverrier (1811-1877), felt that the Newtonian view could not be wrong. The discrepancy had to be due to the existence 
of an unknown planet whose gravitational influence on Uranus was not being allowed for. Independently they calculated 
where such a planet had to be located to account for the observed discrepancy in Uranus's motions, and reached about the 
same conclusion. In 1846 the postulated planet was searched for and found.   
  
    After such a victory, who could doubt the usefulness of the Newtonian view of the universe?   
  
    And yet, by the end of the century, the Newtonian view had been found to be merely an approximation. The universe 
was more complicated than it seemed. Broader and subtler explanations for its workings had to be found.  



  
Action at a Distance   
  
    The beginnings of the collapse were already clearly, in view during the very mid-nineteenth century peak of 
Newtonianism. At least, the beginnings are clearly to be seen by us, a century later, with the advantage of hindsight. The 
serpent in the Newtonian Eden was something called "action at a distance."   
  
    If we consider matter in motion in the ordinary world about us, trying to penetrate neither up into the cosmically vast 
nor down into the sub-microscopically small, it would seem that bodies interact by making contact. If you want to lift a 
boulder you must touch it with your arms or use a lever, one end of which touches the boulder while the other end 
touches your arms.   
  
    To be sure, if you set a ball to rolling along the ground, it continues moving even after your arm no longer touches it; 
and this presented difficulties to the philosophers of ancient and medieval times. The Newtonian first law of motion 
removed the difficulty by assuming that only changes in velocity required the presence of a force. If the rolling ball is to 
increase its velocity, it must be struck by a mallet, a foot, some object; it must make contact with something material. 
(Even rocket exhaust, driving backward and pushing the ball forward - by Newton's third law of motion, makes material 
contact with the ball.) Again, the rolling ball can be slowed by the friction of the ground it rolls on and touches, by the 
resistance of the air it rolls through and touches, or by the interposition of a blocking piece of matter that it must touch.   
  
    Material contact can be carried from one place to another by matter in motion. I can stand at one end of the room and 
knock over a milk bottle at the other end by throwing a ball at it: I exert a force on the ball while making contact with it; 
then the ball exerts a force on the bottle while making contact with it. We have two contacts connected by motion. If the 
milk bottle is balanced precariously enough, I can knock it over by blowing at it. In that case, I throw air molecules at it, 
rather than a ball, but the principle is the same.   
  
    Is it possible, then, for two bodies to interact without physical contact at all? In other words, can two bodies interact 
across a vacuum without any material bodies crossing that vacuum? Such action at a distance is very difficult to imagine; 
it is easy to feel it to be a manifest impossibility.   
  
    The ancient Greek philosopher Aristotle (384-322 B.C.), for instance, divined the nature of sound partly through a 
refusal to accept the possibility of action at a distance; Aristotle felt that one heard sounds across a gap of air because the 



vibrating object struck the neighboring portion of air, and that this portion of the air passed on the strike to the next 
portion, the process continuing until finally the ear was struck by the portion of the air next to itself. This is, roughly 
speaking, what does happen when sound waves travel through air or any other conducting medium. On the basis of such 
an interpretation, Aristotle maintained that sound could not travel through a vacuum. In his day mankind had no means of 
forming a vacuum, but two thousand years later, when it became possible to produce fairly good vacuums, Aristotle 
found to be coreect.   
  
    It might follow, by similar arguments, that all interactions that seem to be at a distance really consist of a series of 
subtle contacts and that no interaction of any kind can take place across a vacuum. Until the seventeenth century it was 
strongly believed that a vacuum did not exist in nature but was merely a philosophical abstraction, so there seemed no 
way of testing this argument.   
  
In the 1640's, however, it became clear that the atmosphere could not be infinitely high. Indeed, it was possibly no more 
than a few dozen miles high, whereas the moon was a quarter of a million miles away, and other astronomical bodies 
were much farther still. Any interactions between the various astronomical bodies must therefore take place across vast 
stretches of vacuum.   
  
    One such interaction was at once obvious, for light reaches us from the sun, which we now know is 93,000,000 miles 
away. This light can affect the retina of the eye. It can affect the chemical reactions proceeding in plant tissue; converted 
to heat, it can evaporate water and produce rain, warm air, and winds. Indeed, sunlight is the source of virtually all energy 
used by man. There is thus a great deal of interaction, by light, between the sun and the earth across the vast vacuum.   
  
    Then, once Newton announced the law of universal gravitation in 1687, a second type of interaction was added, for 
each heavenly body was now understood to exert a gravitational force on all other bodies in the universe across endless 
stretches of vacuum. Where two bodies are relatively close, as are the earth and the moon or the earth and the sun, the 
gravitational force is large indeed, and the two bodies are forced into a curved path about their common center of gravity. 
If one body is much larger than the other, this common center of gravity is virtually at the center of the larger body, 
which the smaller then circles.   
  
    On the earth itself, two additional ways of transmitting force across a vacuum were known. A magnet could draw iron 
to itself and an electrically charged body could draw almost any light material to itself. One magnet could either attract or 
repel another; one electric charge could either attract or repel another. These attractions and repulsions could all be 



exerted freely across the best vacuum that could be produced,   
  
    In the mid-nineteenth century, then, four ways of transmitting force across a vacuum, and hence four possible varieties 
of action at a distance, were known: light, gravity, electricity, and magnetism. And yet the notion of action at a distance 
was as unbelievable to nineteenth-century physicists as it had been to philosophers of ancient Greece.                               
  
    There were two possible ways out of the dilemma; two ways of avoiding action at a distance;   
  
    First, perhaps a vacuum was not really a vacuum. Quite clearly a good vacuum contained so little ordinary matter that 
this matter could be ignored. But perhaps ordinary matter was not the only form of substance that could exist.   
  
    Aristotle had suggested that the substance of the universe, outside the earth itself, was made up of something he called 
ether. The ether was retained in modern science even when virtually all other portions of Aristotelian physics had been 
found wanting and had been discarded. It was retained, however, in more sophisticated fashion. It made up the fabric of 
space, filling all that was considered vacuum and, moreover, permeating into the innermost recesses of all ordinary 
matter.   
  
Newton had refused to commit himself as to how gravitation was transmitted from body o body across the void. "I make 
no hypotheses,” he had said austerely. His followers, however, pictured gravitation as making its way through the ether 
much as sound makes its way through air. The gravitational effect of a body would be expressed as a distortion of that 
part of the ether with which it made contact; this distortion would right itself and in the process, distort a neighboring 
portion of the ether. The traveling distortion would eventually reach another body and effect it. We can think of that 
traveling distortion as an "ether wave."   
  
    The second way out of the dilemma of action at a distance was to assume that forces that made themselves felt across a 
vacuum were actually crossing in the form of tiny projectiles. The projectiles might well be far too small to see, but they 
were there. Light, for instance, might consist of speeding particles that the vacuum. In passing from the sun to the earth, 
they would make contact first with the sun and then with the earth, and then would be no true action at a distance at all, 
any more than in the case of a ball being thrown at a bottle.   
  
    For two centuries after Newton physicists vacillated between these two points of view: waves and particles. The former 
required an ether, the latter did not. This volume will be devoted, in good part, to the details of this vacillation between 



the two views. In the eighteenth century, the particle view was dominant; in the nineteenth the wave view. Then, as the 
twentieth century opened, a contact thing happened--the two views melted into each other and became one!   
  
    To explain how this happened. Let’s begin with the first entity known to be capable of crossing a vacuum--light.   
  

CHAPTER 2 

LIGHT 

  
Light Transmission   
  
    Surely light broke in on man's consciousness as soon as he had any consciousness at all. The origins of the word itself 
are buried deep in the mists of the beginnings of the Indo-European languages. The importance of light was recognized 
by the earliest thinkers. In the Bible itself, God's first command in constructing an ordered universe was "Let there be 
light!"   
  
    Light travels in straight lines. This, indeed, is the assumption each of us makes from babyhood. We are serenely sure 
that if we are looking at an object that object exists in the direction in which we are looking. (This is strictly true only if 
we are not looking at a mirror or through a glass prism, but it is not difficult to learn to make the necessary exceptions to 
the general rule.)   
  
    This straight-line motion of light, its rectilinear propagation, is the basic assumption of optics (from a Greek word 
meaning "sight") the study of the physics of light. Where the behavior of light is analyzed by allowing straight lines to 
represent the path of light and where these lines are studied by the methods of geometry, we have geometric optics. It is 
with geometric optics that this chapter and the next are concerned.   
  
    Consider a source of light such as a candle flame. Assuming that no material object blocks your vision at any point, the 
flame can be seen with equal ease from any direction. Light, therefore, can be visualized as streaming out from its source 
in all directions. The sun, for instance, can be drawn (in two dimensions) as a circle with lines, representing light, and 
extending outward from all parts of the circumference.   
  
    Such lines about the drawing of the sun resemble spokes of a wheel emerging from the hub. The Latin word for the 



spoke of a wheel is radius (which gives us the word for the straight line extending from the center of a circle to its 
circumference). For this reason, the sun (or any light source) is said to radiate light, and light is spoken of as a radiation. 
A very thin portion of such a light radiation, one that resembles a line in its straightness and ultimate thinness, is a light 
ray, again from radius.   
  
    Sunlight shining through a hole in a curtain will form a pillar of light extending from the hole to the opposite wall 
where the intersection of the pillar with the wall will form a circle of bright illumination. If the air of the room is 
normally dusty, the pillar of light will be outlined in glittering dust motes. The straight lines bounding the pillar of light 
will be visible evidence of the rectilinear propagation of light. Such a pillar of light is a light beam (from the resemblance 
of its shape to the trunk of a tree; the German word for tree is "Baum” and a similar word, of course, is found in Anglo-
Saxon). A light beam may be viewed as a collection, of an infinite number of infinitesimally thin light rays.   
  
    Light sources vary in brightness. More light is given off by a hundred-watt light bulb than by a candle, and 
incomparably more light still is given off by the sun. To measure the quantity of light given off by a light source, 
physicists can agree to use some particular light source as standard. The obvious early choice for the standard was a 
candle made of a specified material (sperm wax was best) prepared in a particular way and molded to set specifications. 
The light emitted by this candle horizontally could then be said to equal 1 candlepower. Electric light bulbs of set form 
have now replaced the candle, especially in the United States, but we still speak of the international candle, a measure of 
light quantity about equal to the older candlepower.   
  
    The brightness of a light source varies in some fashion with the distance from which it is viewed: the greater the 
distance, the dimmer it seems. A book held near a candle may be read easily; held farther away it becomes first difficult 
and then impossible to read.   
  
    This is not surprising. Suppose a fixed amount of light is emerging from the candle flame. As it spreads out in all 
directions, that fixed amount must be stretched over a larger and larger area. We can imagine the edge of the illumination 
to be forming a sphere with the light source as center. The sphere's surface grows larger and larger as the light radiates 
outward.   
  
    From plane geometry we know that the surface of a sphere has an area proportional to the square of the length of its 
radius. If the distance from the light source (the radius of the imaginary sphere we are considering) is doubled, the surface 
over which the light is spread is increased two times two, or 4 times. If the distance is tripled, the surface is increased 9 



times. The total quantity of light over the entire surface may remain the same, but the intensity of light--that is, the 
amount of light falling on a particular area of surface--must decrease. More, it must decrease as the square of the distance 
from the light source. Doubling the distance from the light source decreases the light intensity to 1/4 the original; tripling 
the distance decreases it to 1/9.   
  
    Suppose we use the square foot as the unit of surface area and imagine that square foot bent into the shape of a segment 
of a spherical surface so that all parts of it are equidistant from the centrally located light source. If such a square foot is 
just one foot distant from a light source delivering 1 candle of light, then the intensity of illumination received by the 
surface is 1 foot-candle. If the surface is removed to a distance of two feet, the intensity of its illumination is 1/4 foot-
candle, and so on.   
  
    Since light intensity is defined as the quantity of light per unit area, we can also express it as so many candles per 
square foot. For this purpose, however, a unit of light quantity smaller than the candle is commonly used. This is the 
lumen (from a Latin word for "light"); Thus if one square foot at a certain distance from a light source receives 1 lumen 
of light, two square feet at that same distance will receive 2 lumens of light, and half a square foot will receive 1/ 2 

lumen. In each case, though, the light intensity will be 1 lumen/foot2. The lumen is so defined that an intensity of 1 

lumen/foot2 equals 1 foot-candle.   

  
    Imagine a light source of 1 candle at the center of a hollow sphere with a radius of one foot. The light intensity on each 

portion of the interior surface of the sphere is 1 foot-candle, or 1 lumen; foot2. Each square foot of the interior surface is 

therefore receiving 1 lumen of illumination. The area of the surface of the sphere is equal to 4 (pi) r2 square feet. Since 
the value of r, the radius of the sphere, is set at 1 foot, the number of square feet of surface equals 4(pi). The quantity (pi) 
(the Greek letter pi) is equal to about 3.14, so we can say that there are about 12.56 square feet on that spherical surface. 
The light (which we have set at 1 candle) is therefore delivering a total of 12.56 lumens, so we can say that 1 candle 
equals 12.56 lumens.   
  
    Light is transmitted, completely and without impediment, only through a vacuum. All forms of matter will, to some 
extent at least, absorb light. Most forms do so to such an extent that in ordinary thickness they absorb all the light that 
falls on them and are opaque (from a Latin word meaning "dark").   
  
    If an opaque object is brought between a light source and an illuminated surface, light will pass by the edges of the 



object but not through it. On the side of the object opposite the light source there will therefore be a volume of darkness 
called a shadow. Where this volume intersects the illuminated surface there will be a non- illuminated patch; it is this 
two-dimensional intersection of the shadow that we usually refer to by the word.   
  
    The moon casts a shadow. Half its surface is exposed to the direct illumination of the sun: the other half is so situated 
that the opaque substance of the moon itself blocks the sunlight. We see only the illuminated side of the moon, and 

because this illuminated side is presented to us at an angle that varies from 00 to 3600 during a month, we watch the 
moon go through a cycle of phases in that month.   
  
    Furthermore, the moon's shadow not only affects its own surface, but stretches out into space for over two hundred 
thousand miles if the sun were a "point source"-that is, if all the light came from a single glowing point--the shadow 
would stretch out indefinitely. However, the sun is seen as an area of light, and as one recedes from the moon its apparent 
size decreases until it can no longer cover all the area of the much larger sun. At that point, it no longer casts a complete 
shadow, and the complete shadow (or umbra, from a Latin word for "shadow") narrows to a point. The umbra is just long 
enough to reach the earth's surface, however, and on occasion, when the moon interposes itself exactly between earth and 
sun a solar eclipse takes place over a small area of the earth’s surface.   
  
The earth casts a shadow, too, and half its surface is in that shadow. Since the earth rotates in twenty-four hours, each of 
us experiences this shadow ("night") during each 24-hour passage. (This is not always true for polar areas, for reasons 
better discussed in a book on astronomy.) The moon can pass through the earth's shadow, which is much longer and 
wider than that of the moon, and we can then observe a lunar eclipse.   
  
    Opaque materials are not absolutely opaque. If made thin enough, some light will pass through. Fine gold leaf, for 
instance, will be traversed by light even though gold itself is certainly opaque.   
  
    Some forms of matter absorb so little light (per unit thickness) that the thicknesses we ordinarily encounter do not 
seriously interfere with the transmission of light. Such forms of matter are transparent (from Latin words meaning “to be 
seen across"). Air itself is the best example of transparent matter. It is so transparent that we are scarcely aware of its 
existence, since we see objects through it as if there were no obstacle at all. Almost all gases are transparent. Numerous 
liquids, notably water, are also transparent.   
  
    It is among solids that transparency is very much the exception. Quartz is one of the few naturally occurring solids that 



display the property, and the astonished Greeks considered it a term of warm-ice. The word "crystal." first applied to 
quartz is from their word for "ice," and the word "crystalline" has as one of its meanings "transparent."   
  
    Transparency becomes less pronounced when thicker and thicker sections of ordinarily transparent substances are 
considered. A small quantity of water is certainly transparent, and the pebbles at the bottom of a clear pool can be seen 
distinctly However, as a diver sinks beneath the surface of the sea, the light that can reach him grows feebler and feebler, 
and below about 450 feet almost no light can penetrate. Thicknesses of water greater than that are as opaque as if they 
represented the same thickness of rock, and the depths of the sea cannot be seen through the "transparent" water that 
overlays it.   
  
    Air absorbs light to a lesser extent than water does and is therefore more transparent. Even though we are at the bottom 
of an ocean of air many miles high, sunlight has no trouble penetrating to us, and we in turn have no trouble seeing the 
much feebler light of the stars. Nevertheless some absorption exists: it is estimated, for instance, that 30 percent of the 
light reaching us from space is absorbed by that atmosphere. (Some forms of radiation other than visible light are 
absorbed with much greater efficiency by the atmosphere, and the thickness of air that blankets us suffices to make the air 
opaque to these radiations.)   
  
    Light is a form of energy, and while it can easily be changed into other forms of energy, it cannot be destroyed. While 
absorption by an opaque material (or a sufficient thickness of a transparent material) seems to destroy it, actually it is 
converted into heat.  
  
Reflection   
  
    The statement that light always travels in a straight line is completely true only under certain circumstances, as when 
light travels through a uniform medium--through a vacuum, for instance, or through air that is at equal temperature and 
density throughout. If the medium changes-as when light traveling through air strikes an opaque body--the straight-line 
rule no longer holds strictly. Such light as is not absorbed by the body changes direction abruptly, as a billiard ball will-
when it strikes the edge of a pool table.   
  
    This bouncing back of light from an opaque body is called reflection (from Latin words meaning "to bend back").   
  
    The refection of light seems to follow closely the rules that govern the bouncing of a billiard ball. Imagine a flat 



surface capable of reflecting light. A line perpendicular to that surface is called the normal, from the Latin name for a 
carpenter's square used to draw perpendiculars. A ray of light moving along the normal strikes the reflecting surface 
head-on and doubles back in its tracks. A speeding billiard ball would do the same.   
  
    If the ray of light were traveling obliquely with respect to the reflecting surface, it would strike at an angle to the 
normal. The light ray moving toward the surface is the incident ray, and its angle to the normal is the angle of incidence. 
The reflected ray would return on the other side of the normal, making a new angle, the angle of reflection. The incident 
ray, reflected ray, and normal are all in the same plane--that is, a flat sheet could be made to pass through all three 
simultaneously without its flatness being distorted.   
  
    Experiments with rays of light and reflecting surfaces in dusty air, which illuminates the light rays and makes them 
visible, will show that the angle of incidence (i) always equals the angle or reflection (r). This can be expressed, simply:  
  
i = r                     (Equation 2-1)   
  
    Actually, it is rare to find a truly flat surface. Most surfaces have small unevennesses even when they appear flat. A 
beam of light, made up of parallel rays, would not display the same angle of incidence throughout. One ray might strike 

the surface at a spot where the angle of incidence is 00; another might strike very close by where the surface has 

nevertheless curved until it is at an angle of 100 to the light; elsewhere it is 100 in the other direction, or 200, and se on. 
The result is that an incident beam of light with rays parallel will be broken up on reflection, with the reflected rays 
traveling in all directions over a wide arc. This is diffuse reflection.  
  
    Almost all reflection we come across is of this type. A surface that reflects light diffusely can be seen equally well 
from different angles, since at each of the various angles numerous rays of light are traveling from the object to the eye.   
  
    If a surface is quite flat, a good portion of the parallel rays of incident light will be reflected at the same angle. In such 
a case, although you can see the reflecting object from various angles, you will see far more light if you orient yourself at 
the proper angle to receive the main reflection. At that point you will see a highlight."   
  
    If a surface is extremely flat, virtually all the parallel rays of an incident beam of light will be reflected still parallel. As 
a result, your eyes will interpret the reflected beam as they would the original.   
  



    For instance, the rays of light reflected diffusely from a person's face make a pattern that the eyes transmit and the 
brain interprets as that person's face. If those rays strike an extremely flat surface, are reflected without mutual distortion, 
and then strike your eyes, you will still interpret the light as representing that person's face.   
  
    Your eyes cannot, however, tell the history of the light that reaches them. They cannot, without independent 
information, tell whether the light has been reflected or not. Since you are used from earliest life to interpreting light as 
traveling in straight uninterrupted lines, you do so now, too. The person's face as seen by reflected light is seen as if it 
were behind the surface of reflection, where it would be if the light had come straight at you without interruption, instead 
of striking the mirror and being reflected to you.   
  
    The face that you see in a mirror is an image. Because it does not really exist in the place you seem to see it (look 
behind the mirror and it is not then) it is a virtual image. (It possesses the "virtues" or properties of an object without that 
object actually being there.) It is, however, at the same distance behind the mirror that the reflected object is before it and 
therefore seems to be the same size us the reflected object.   
  
    In primitive times virtually the only surface flat enough to reflect an image was a sheet of water. Such images are 
imperfect because the water if rarely quite undisturbed, and even when it is, so much light is transmitted by the water and 
so little reflected that the image is dim and obscure. Under such circumstances a primitive man might not realize that it 
was his own face staring back at him. (Consider the Greek myth of Narcissus, who fell hopelessly in love with his own 
reflection in the water end drowned trying to reach it.)   
  
    A polished metal surface will reflect much more light, and metal surfaces were used throughout ancient and medieval 
times as mirrors. Such surfaces, however, are easily scratched and marred. About the seventeenth century the glass-metal 
combination became common. Here a thin layer of metal is spattered onto a sheet of flat glass. It we look at the glass 
side, we see a bright reflection from the metal surface covering the other side. The glass serves to protect the metal 
surface from damage. This is a mirror (from a Latin word meaning "to look at with astonishment." which well expresses 
primitive feelings about images of one's self) or looking glass. A Latin word for mirror is speculum, and for that reason 
the phrase for the undisturbed reflection from an extremely flat surface is specular reflection. 
  
An image as seen in a mirror is not identical with the object reflected.   
  
    Suppose you are facing a friend. His right side is to your left; his left side is to your right. If you want to shake hands, 



right hand with right hand, your hands make a diagonal line between your bodies. If you both part your hair on the left 
side, you see his part on the side opposite that of your own.   
  
    Now imagine your friend moving behind you but a little to one side so that you can both be seen in the mirror before 
you. Ignore your own image and consider your friend's only. You are now facing, not your friend, but the image of your 
friend, and there is a change. His right side is on your right and his left side is on your left. Now the parts in your hair are 
on the same side, and if you hold out your right hand while your friend holds out his, your outstretched hand and that of 
the image will be on the same side.   
  
    In short, the image reverses right and left; an image with such a reversal is a mirror image. A mirror image does not, 
however, reverse up and down. If your friend is standing upright, his image will be upright, too.   
  
Curved Mirrors    
  
    The ordinary mirror with which we are familiar is a plane mirror--that is, it is perfectly flat. A reflecting surface, 
however, need not be flat to exhibit specular reflection. It can be curved, as long as it is smooth. Parallel rays of light 
reflected from a curved surface are no longer parallel, but neither are they reflected in random directions. The reflection is 
orderly and the rays of light may converge (from Latin words meaning “to lean together") or diverge ("to lean apart").   
  
    The simplest curvature is that of a section of a sphere. It you are looking at the outside of the section, so that it forms a 
hill toward you with the center closest to you, it is a convex surface (from Latin words meaning "drawn together"). If you 
are looking at the inside of the spherical section, you are looking into a hollow with the center farthest from you. That is a 
concave surface (“with a hollow").   
  
    A spherical segment of glass, properly silvered, is a spherical mirror. If it is silvered on its convex surface so that you 
see it as a mirror if you look into its concave surface, it is, of course, a concave spherical mirror. The center of the sphere 
of which the curved mirror is part is the center of curvature. A line connecting the center of curvature with the midpoint 
of the mirror is the principal axis of the mirror.   
  
    Suppose a beam of light, parallel to the principal axis, falls upon the concave reflecting surface. The ray that happens 
to lie on the principal axis itself strikes perpendicularly and is reflected back upon itself. With a ray of light that strikes 
near the principal axis but not on it, the mirror has curved in such a way that the ray makes a small angle with the normal. 



It is reflected on the other side of the normal in a fashion that bends it slightly toward the principal axis. If the ray of light 
strikes farther from the principal axis, the mirror has bent through a larger angle and reflects the ray more sharply toward 
the principal axis. Since the mirror is a spherical segment and curves equally in all directions from the principal axis, this 
is true of rays of light striking either right or left of the principal axis, either above or below it. Reflections from every 
part of the mirror point toward the principal axis; the reflected rays converge.   
  
    If only those rays that strike fairly close to the midpoint of the mirror are considered, it is found that they converge in 
such, a way as to meet in a restricted region-approximately at a point, in fact. This point is called a focus (from a Latin 
word for "hearth," which is where one would expect a concentration of light). The focus falls on the principal axis, 
halfway between the midpoint of the mirror and the center of curvature.   
  
    Actually, the reflected rays do not all meet exactly at the focus. This becomes obvious if we consider rays that fall on 
the spherical mirror quite a distance from the principal axis. The reflections of these rays miss the focus by a considerable 
distance. This is called spherical aberration (from the Latin, "to wander away"). These distant rays fall between the focus 
and the mirror itself and are therefore reflected through too great an angle. The mirror, in other words, has curved too 
sharply to bring all the rays to a focus.   
  
    To avoid this, we need a curved mirror that curves somewhat less sharply than a spherical segment does. The necessary 
curve is that of a paraboloid of revolution.   
  
    A spherical section, if it is continued, closes in upon itself and finally forms a sphere. A paraboloid of revolution looks 
like a spherical segment if only a small piece about the midpoint is taken. If it is continued and made larger, it does not 
close in upon itself. It curves more and more gently till its walls are almost straight, forming a long cylinder that becomes 
wider only very slowly. A mirror formed of a section (about the midpoint) of such a paraboloid of revolution is called a 
parabolic mirror.   
  
    If a beam of light parallel to the principal axis of such a parabolic mirror falls upon its concave surface, the rays do 
indeed converge upon a focus, and without aberration.   
  
    To produce such a beam of light, consisting of parallel rays, we must, strictly speaking, think of a point source of light 
on the principal axis an infinite distance from the mirror. If the point source is a finite distance away, then the rays 
striking the mirror from that point source are not truly parallel, but diverge slightly. Each ray strikes the mirror surface at 



an angle to the normal, which is slightly smaller than it would be if the rays were truly parallel, and in consequence is 
reflected through a smaller angle. The rays therefore converge farther away from the mirror than at the focus. If the 
distance of the point source is large compared to the distance of the focus (which is only a matter of a few inches for the 
average parabolic mirror the average parabolic mirror), then the rays converge at a point very near the focus--near enough 
so that the difference can be ignored.   
  
    If the light source is moved closer and closer to the mirror, the reflected rays converge farther and farther from the 
mirror. When the light source is at twice the distance of the focus from the mirror, eventually the reflected rays converge 
at the light source itself. If the light source is moved still closer, the reflected rays converge at a point beyond the light 
source.   
  
    Finally, if the light source is located at the focus itself, the reflected rays no longer converge at all, but are parallel. (We 
might say that the point of convergence has moved an infinite distance away from the mirror.) The automobile headlight 
works in this fashion. Its inner surface is a parabolic mirror, and the small incandescent bulb is at its focus. Consequently, 
such a headlight casts a fairly straight beam of light forward.   
  
    Let us call the distance of the light source from the mirror D(0), and the distance of the point of convergence of the 
reflected rays from the mirror, D(1). The distance of the focus from the mirror we can call (f). The following relationship 
then holds true:   
  
1/ D(0) + 1/ D(1)  = 1/f                      Equation (2-2) 
  
  We can check this for the cases we have already discussed. Suppose that the light source is at a very great distance 
(practically infinite). In that case, D(0),  is extremely large and 1/ D(0),  is extremely small. In fact, 1/ D(0),  can be 
considered zero. In that case, Equation 2-2 becomes 1/ D(1),  = 1/f, and  
D(1) = f, which means that the reflected rays of light converge at the focus.   
  
    If the light source is on the principal axis but at twice the distance from the mirror that the focus is, then D(0) = 2f, and 
Equation 2-2 becomes: 1/2f  +1/D(1) =  l/f.  
  
If we solve this equation for D(1), we find that D(1) = f. In other words, the reflected rays in this case converge upon the 
location of the light source itself.   



  
    And what if the light source is located at the focus? In that case D(0) = f. Equation 2-2 becomes   
1/f + l/D(1) = l/f, from which you can see at once that 1/D(1) = 0. But if 1/D(1) = 0, then D(1) must be infinitely large. 
The distance from the mirror at which the reflected rays converge is infinite, and therefore the rays do not converge at all 
but are parallel.   
  
    In the previous section I have been considering the source of light to be a point. Actually, of course, it is not really a 
point. Suppose the source of light is a candle flame, which, naturally, covers an area. Some of the flame is slightly above 
the principal axis, some slightly below, some to one side, and some to another. The rays of light that originate somewhat 
above the principal axis are reflected to a point somewhat below the true point of convergence (that is, what would have 
been the true point if the candle flame had been a point source of light); those that originate below the principal axis are 
reflected to a point above the point of convergence; those that originate to the right are reflected to the left; those that 
originate to the left are reflected to the right. If we take any particular ray, the greater the distance from the principal axis 
it originates, the greater the distance from the point of convergence, but on the opposite side.   
  
    The result is that in the area where the reflected rays of light converge, one obtains an image in which not only left and 
right are interchanged (as in a plane mirror), but also up and down. An upside-down image is formed; indeed, if you look 
into the shiny bowl of a spoon, you will see your face upside down.   
  
    The image produced by such a concave mirror has another important difference from that produced by a plane mirror. 
The image produced by the plane mirror, as was stated earlier, is not actually behind the mirror where it seems to be, so it 
is a virtual image. In the case of a concave mirror, the image is formed in front of the mirror by means of converging light 
rays. The image is really there and can be touched; therefore it is a real image.   
  
    To be sure, when you actually touch a real image you don't seem to be touching anything, because you are used to 
considering touch only in connection with matter. A parabolic mirror does not converge matter; it converges light and 
you cannot touch light in the ordinary sense. However, you can sense light when it is absorbed by the skin and turned to 
heat; and in that respect, by feeling heat, you are "touching" the image.   
  
    A finger held six feet from a candle flame absorbs some heat from the radiation that falls directly upon it. The finger, 
however, intercepts but a small fraction of the total radiation of the candle, and the heating effect is insignificant. A 
concave mirror would intercept more of the candle's radiation and converge it to a small volume of space. The finger 



placed at the area of convergence would feel more heat in that area than elsewhere in the neighborhood. The increase in 
heat concentration may still be too little to feel, but if the concave mirror is used to concentrate the rays of the sun 
instead, you will certainly feel it. Large parabolic mirrors have been built that intercept solar radiation over a sizable area 
and converge it all. Temperatures as high as 7000 degree C have been reached at the focus of such solar furnaces. There 
is a real image that can be felt with a vengeance.   
  
    A mirror of changing curvature can produce odd and humorous distortions in the image, as anyone attending 
amusement parks knows. However, a proper image from a clean mirror of undistorted shape can seem completely 
legitimate, particularly if the boundaries of the mirror are masked so that the onlooker has no reason to feel that a mirror 
is there at all. The casual viewer mistakes image for reality and this is the basis for some of the tricks of the magician. 
Naturally, a real image is even more tantalizing than a virtual image. At the Boston Museum of Science, a real image is 
projected in such a way as to make coins seem to tumble about in an upside-down goblet in defiance of gravity. 
Onlookers (adults as well as children) never tire of placing their hands where the coins seem to be. Not all their 
insubstantiality can convince the eyes that the coins are not there.   
  
    Suppose the light source is moved still closer to the mirror than the distance of the focus. In that case, the reflected rays 
an neither convergent nor parallel; they actually diverge. Such diverging rays, spraying outward from a surface, may be 
considered as converging if you follow them backward. Indeed, if you follow them (in imagination) through the mirror's 
surface and into the space behind, they will converge to a point. At that point you will see an image. Because it appears 
behind the mirror where the light really doesn’t penetrate, it is a virtual image, as in the case plane mirror; and, as in the 
case of a plane mirror, the image is now right-side up.   
  
    Equation 2-2 can be made to apply to this situation. If the light source is closer to the mirror than the focus is, then D
(0), is smaller than f. and 1/ D(0) must therefore be larger than 1/f. (If this is not at once clear to you, recall that 2 is 
smaller than 4, and that 1/2 is therefore larger than 1/4.) If we solve Equation 2-2 for 1/ D(1) we find that: 1/ D(1) = 1/f  - 
1/ D(0) (Equation 2-3). Since in the case under consideration, 1/ D(0) is larger than 1/f, 1/ D(1), must be a negative 
number. From this it follows that D(1) itself must be a negative number.   
  
    This makes sense. In the previous cases under discussion, distances have all extended forward from the mirror. In the 
present case the point at which the reflected rays converge, and where the image exists, lies behind the mirror, and its 
distance should, reasonably, be indicated by a negative value.   
  



    Nor need Equation 2-2 be applied only to concave mirrors; it is more general than that.   
  
    Consider a plane mirror again. A beam of parallel rays striking it along its principal axis (any line normal to the plane 
mirror can be considered a principal axis) is reflected back along the principal axis as parallel as ever. The rays do not 
converge and therefore the distance of the focus from the mirror is infinitely great. But if (f) is infinitely great, then `/f 
must equal zero and for a plane mirror, Equation 2-2 becomes:  
  
1/ D(0) + 1/ D(1)  = 0                                 (Equation 2-4)  
  
  
 If Equation 2-4 is solved for D(1)  it turns out that D(1)   = - D(0)   Because D(0) (the distance of the object being 
reflected) must always be positive since it must always lie before the mirror in order to be reflected at all, D(1) must 
always be negative. In a plane mirror, therefore, the image must always lie behind the mirror and be a virtual one. Since, 
except for sign, D(1) and - D(0)  are equal, the image is as far behind the mirror as the object being reflected is in front of 
the mirror.   
  
    What, now, if we have a convex mirror--that is, a curving mirror which is silvered on the concave side so that we look 
into and see a reflection from the convex side? A parallel sheaf of light rays striking such a mirror is reflected away from 
the principal axis (except for the one ray that strikes right along the principal axis). Again, if the diverging reflected rays 
are continued backward (in imagination) through the mirror and beyond, they will converge to a focus.   
  
    The focus of a convex mirror, lying as it does behind the mirror, is a virtual focus, and its distance from the mirror is 
negative. For a convex mirror then, we must speak of -f and, therefore, of -1/f. Again, since the reflected rays diverge, no 
real image will be formed in front of the mirror; only a virtual image (right-side up) behind the mirror. Therefore, we 
must speak of –D(1) and -1/D(1). For a convex mirror, Equation 2-2 becomes:  
  
1/ D(0)   - 1/ D(1)  = -1/f  (Equation 2-5)  
  
or 
  
1/ D(0)   = 1/ D(1)  - 1/f  (Equation 2-6)   
  



    Since the object being reflected must always be in front of the mirror, D(0)  and, therefore. 1/ D(0)    must be positive. 
It follows then that 1/D(1) -1/f must be positive, and for that to be true, 1/D(1) must be greater than 1/f. But this leads us 
one step farther and tells us that D(1) itself must be smaller than f. In other words, the apparent distance of all the virtual 
images reflected by a convex mirror must be less than that of the focus, however distant from the mirror the object being 
reflected is. For this reason, all objects reflected in a convex mirror seem compressed into a tiny space, and small convex 
mirrors at one corner of a large crowded room can give a panoramic view (albeit distorted) of the entire room.   
  
    The size of the image (S(1)) is related to the size of the object being reflected (S(0)), as the respective distances are 
related, regardless of whether those distances extend before or behind the mirror. In other words:    
  
S(1)/ S(0)  = D(1) / D(0)    (Equation 2-7) 
  
  
    In a plane mirror, where the distance of the image from the mirror is equal to the distance from the mirror of the object 
being reflected, the sizes of the object and image are likewise equal. An image is neither diminished nor enlarged in a 
plane mirror. In a convex mirror, where all images must be closer to the mirror than the focus, however distant the objects 
being reflected are, all the images are small as well. The more distant the object being reflected, the closer and, therefore, 
the smaller the image.   
  
    In a concave mirror, however, when the object being reflected lies between the focus and the center of curvature, the 
image is beyond the center of curvature. In such a case, since the image is farther from the mirror than is the object being 
reflected, the image is larger than the object. The closer the object is brought to the focus, the larger the image appears. 
Of course, the larger the image is, the dimmer it is, for a given amount of light is spread out over a larger and larger 
volume.  
  
Refraction   
  
    Light need not be reflected in order to deviate from straight-line motion. Light, in passing from one transparent 
medium into another, say from air into water, will generally not be reflected but will continue traveling forward and 
nevertheless may change direction.   
  
    This was undoubtedly first noticed by primitive men when - a rod, placed in water in such a way that part remained in 



the air above, seemed bent at the point where it entered the water. If, however, it was withdrawn, it proved as straight and 
rigid as ever. 
  
  
Again, it is possible to place an object at the bottom of an empty cup and look at-the cup from such an angle that the 
object is just hidden by the rim. If water is now placed in the cup, the object at the bottom becomes visible though neither 
it nor the eye has moved. As long ago as the time of the ancient Greeks, it was realized that to explain this, one had to 
assume that light changed its direction of travel in passing from one transparent medium to another.   
  
    Imagine a flat slab of clear glass, perfectly transparent, and imagine a ray of light falling upon it along the normal line-
that is, striking the glass at precisely right angles to its flat surface. The light, if one investigates the situation, is found to 
continue through the glass, its direction unchanged.   
  
    Suppose, though, that the light approaches the glass obliquely, forming the angle (i) with the normal. One might 
suspect that the light would simply continue moving through the glass, making the same angle (i) with the normal within 
that glass. This, however, is not what happens. The ray of light is bent at the point where air meets glass  (the air-glass 
interface). Moreover, it is bent toward the normal in such a way that the new angle it makes with the normal inside the 
glass (r) is smaller than (i) the angle of incidence.   
  
    This change in direction of a light ray passing from one transparent medium to another is called refraction (from Latin 
words meaning "to break back"). The angle (r)  is, of course, the angle of refraction.   
  
    If the angle of incidence is made larger or smaller, the angle of refraction also becomes larger or smaller. For every 
value of (i), however, where light passes from air into glass (r) remains smaller.   
  
    The ancient physicists thought that the angle of refraction was directly proportional to the angle of incidence, and that 
therefore doubling (i) would always result in a doubling of (r). This is nearly so where the angles involved are small, but 
as the angles grow larger, this early "law" fails.   
  

    Thus, suppose a light ray makes an angle of 300 to the normal as it strikes the air-glass interface and the angle of 

refraction that results after the light passes into the glass is 19.50. If the angle of incidence is doubled and made 600, the 



angle of refraction becomes 35.30. The angle of refraction increases, but it does not quite double.   

  
    The correct relationship between i and r was worked out first in 1621 by the Dutch physicist Willebrord Snell (1591-
1626). He did not publish his finding, and the French philosopher Rene Descartes (1596-1650) discovered the law 
independently in 1637, publishing it in the form (rather simpler than Snell's) that we now use.   
  
    The Snell-Descartes law of refraction states that whenever light passes from one transparent medium into another, the 
ratio of the sine of the angle of incidence to the sine of the angle of refraction is constant. The sine of angle x is usually 
abbreviated as sin x, so the Snell-Descartes law can be expressed: 
  
 sin (i) /  sin(r) = n                             (Equation 2-8)   
  
    When a light ray passes (obliquely) from a vacuum into some transparent substance, the constant, (n) is the index of 
refraction of that substance.   
  

    If light enters from a vacuum into a sample of gas at 00C and 1 atmosphere pressure (these conditions of temperature 
and pressure are usually referred to as standard temperature and pressure, a phrase often abbreviated STP), there is only a 
very slight refraction. This means that the angle of retraction is only very slightly smaller than the angle of incidence, and 
sin (r) is, in consequence, only very slightly smaller than sin (i). Where this is true, we can see from Equation 2-8 that the 
value of (n) must be only very slightly greater than 1.  
  
    In fact, for hydrogen at STP, the index of refraction is 1.00013, and for air at STP it is 1.00029. There is very little 
error, therefore, in determining the index of refraction where light passes from air into some transparent substance rather 
than from vacuum into that transparent substance.   
  
    For liquids and solids, the situation is quite different. Water has an index of refraction of 1.33, while the index of 
retraction of glass varies from 1.5 to 2.0, depending on its exact chemical makeup. For an unusually high value, there is 
diamond, which has an index of refraction of 2.42. A ray of light entering diamond from air with an angle of incidence of 

600 passes into diamond with an angle of refraction of only 21.10.   

  
The greater the index of refraction of a material, the greater is its optical density. Thus, diamond is optically denser than 



glass, which is optically denser than water, which is optically denser than air. When a light ray travels from an optically 
less dense material into an optically more dense one, the direction of the light ray is bent toward the normal. This happens 
when light travels from air into water, for instance, or from water into diamond. A light ray traveling from an optically 
more dense material to an optically less dense one is bent away from the normal. One effect cancels the other. Thus if 
light passes from air into glass, striking at angle (i) and entering at angle (r) and then passes from glass into air, striking at 
angle (r) it will emerge at angle (i).   
  

    Suppose, for instance, that a ray of light strikes a sheet of glass with an angle of incidence of 600. The angle of 

retraction is 35.30. After traveling through the thickness of the glass, the light ray reaches the other glass-air interface, 
which in the usual sheet of glass is precisely parallel to the first. As a result, any line which is normal to one interface is 
also normal to the other. At the second interface, the light is passing from glass into air, so it bends away from the 

normal. Since now it strikes at 35.30, it emerges at 600. The light having emerged from the glass sheet is now traveling in 
the same direction in which it had been traveling when it had entered; the refractive effect at one interface had been 
cancelled at the other and the slight displacement of light rays that result goes unnoticed. (It is for this reason that looking 
obliquely through a window that is reasonably free of imperfections in the glass does not confuse us. Objects seen 
through a window are indeed in the direction they seem to be.)   
  
    Suppose we rearrange Equation 2-8 in order to solve for sin r. The result is:  
  
sin (r)  = sin (i) / n                                        (Equation 2-9)  
  

If the angle of incidence is 00, then sin (i) is equal to 0, and sin (r) is equal to 0/n, or 0. The angle of incidence can be 

increased up to 900, at which time the ray of light is perpendicular to the normal and just skims along parallel to the 

interface. If the angle of incidence has its maximum value of 900, sin i is equal to 1, and the value of sin r is 1/n. In other 

words, as (i) goes through its extreme variation from 00 to 900, sin r goes through an extreme variation from 0 to 1/n. In 
the case of water, when n equals 1.33, the extreme variation for sin r is from 0 to 0.75.   
  

    The angle that has a sine of 0 is 00, and the angle that has a sine of 0.75 is (referring to a table of sines) is 48.60. 

Therefore as the angle of incidence for light passing from air into water varies from 00 to 900, the angle of refraction 

varies from 00 to 48.60. The angle of refraction cannot be higher than 48.60, no matter what the angle of incidence.   



  
    But what if we reverse the situation and imagine light emerging from water into air? The relationship of the angles is 
reversed. Now the light is retracted away from the normal. As the light (in passing from water into air) forms an angle of 

incidence varying from 00 to 48.60, the angle of retraction (formed by the light emerging into the air) varies from 00 to 

900.   

  
    Yet a skin diver under water with a flashlight may easily direct a beam of light so that it makes an angle to the normal 

(under water) of more than 48.60. It should emerge at an angle of more than 900, which means that it really does not 

emerge at all, since an angle of more, than 900 to the normal will direct it under water again. The light, in other words, in 

passing from water to air will, if it strikes the interface at more than the critical angle of 48.60, be reflected entirely. This 
is total reflection.   
  
    As you can see from Equation 2-9, the greater the index of refraction (n) of a substance, the smaller the critical angle. 

For ordinary glass the critical angle is about 420, and for diamond. 24.50. Light can be led through transparent plastic 
tubes around curves and corners if the rays from the light source, shining in at one end, always strike the plastic-air 
interface at angles greater than the critical angle for that plastic. 
  
The index of refraction of air itself, while very small, can introduce noticeable effects where great thicknesses are 
involved. If a heavenly body is directly overhead, its light passes from the vacuum of space into the gas of our 

atmosphere with an incident angle of 00 and there is no refraction. An object that is not overhead has an angle of 

incidence greater than 00, and its light is bent slightly toward the normal. Our eye, following the light backward without 
making allowance for any bending, sees the light source as somewhat higher in the sky than it actually is.   
  
    The lower in the sky a light source is, the greater the angle of incidence and the greater its difference from the angle of 
refraction. The greater, therefore, the discrepancy between its apparent and its real position. By the time objects at the 
horizon are involved, the eye sees an object higher than it really is by more than the width of the sun. Consequently, when 
the sun is actually just below the horizon, the refraction of the atmosphere allows us to see it as just above the horizon. 
Furthermore, the lowermost part of the sun, being lowest, undergoes the most refraction and is raised the more. As a 
result, the setting sun seems oval and flattened at the bottom.   
  



    Nor is the refractive curve of light as it enters our atmosphere from space a sharp one. The air is not uniformly dense 
but increases in density as one approaches earth's surface. Its index of refraction increases as its density does. 
Consequently, as light passes from space to our eye it bends more and more, following what amounts to a smooth curve 
(rather than the straight line we take so for granted).   
  
    The index of refraction of the air varies with temperature, too, and when a layer of air near the ground is heated, and 
overlaid with cooler air, light will curve in such a way as to make distant objects visible. The temperature conditions of 
the air may even cause objects on the ground to appear upside down in the air. The mirages that have resulted in this way 
(often in deserts where temperature differences between layers of air may be more extreme than elsewhere) have fooled 
victims all through history. In modern times such effects may make newspaper headlines, as when a person mistakes the 
headlights of a distant automobile reaching him through a long, gentle refractive curve, and reports "flying saucers" to be 
speeding their way through the sky.   
  
  
  
  

CHAPTER 3 
Lenses 

Focus by Transmission   
  
    When the two edges of a piece of glass are not parallel, the normal to one edge will not be parallel to the normal to the 
other edge. Under such conditions, refraction at the far edge will not merely reverse the refraction at the near edge, and a 
ray of light passing through the glass will not emerge in the same direction it had on entrance. This is the case, for 
instance, when light passes through a triangle of glass, or prism.  
  
    Imagine you are observing a ray of light touching the air-glass interface of such a prism, oriented apex-upward. If the 
ray of light meets the normal at an angle from below, it crosses into the glass above the normal but makes a smaller angle 
with it because the glass is optically more dense than the air. When the ray of light reaches the glass-air interface at the 
second side of the prism, it makes an angle with a new normal altogether, touching the interface above this normal. As it 
emerges into air, it must bend away from the new normal, because air is optically less dense than glass.   
  



    The result is that the ray of light bends twice in the same direction, first on entering the glass and then on leaving it. On 
leaving the glass it is traveling in a direction different from that in which it had entered. Light always passes thorough a 
prism in such a way that it bends away from the apex and toward the base.   
  
    Suppose you had two prisms set together, base to base, and a parallel beam of light is striking this double prism in a 
direction parallel to the mutual base line. The upper half of the beam, striking the upper prism, would be bent downward 
toward its base. The lower half of the beam, striking the lower prism, would be bent upward toward its base. The two 
halves of the beam of light, entering the double-prism parallel, would converge and cross on the other side.   
  
    The cross section of a double prism has interfaces consisting of two straight lines before and two straight lines behind, 
so its overall shape is that of a parallelogram (something like the "diamond" on the ace of diamonds in the deck of cards). 
In such a double prism, the normals to every point on the upper half are parallel because the interface is straight. 
Therefore all the rays in the light beam striking it make equal angles to the normal and are refracted through equal angles. 
The same is true, for the lower half of the double prism, though there all the rays are bent upward rather than downward. 
The two half-beams emerge on the other side of the double prism as sheaf’s of parallel rays of light and cross each other 
over a broad front.   
  
    But what if the double-prism interfaces are smoothed out into a pair of spherical segments? The resulting figure would 
still be thin at the top and bottom and thickest in the middle, but now the normal to the surface would vary in direction at 
every point. If the solid is held with its points in an up-down direction, then the normal would be horizontal at the center 
and would point more and more upward as one traveled toward the upper apex; it would point more and more downward 
as one traveled toward the lower apex.   
  
    Suppose now that a parallel sheaf of light rays strikes such a solid so that the ray striking the central thickest portion 
travels along the normal. It is not refracted but emerges from the other side unchanged in direction. Light rays striking a 
little above make a small angle with the upward-tipping normal and are refracted slightly downwards. Light rays striking 
still higher make a somewhat larger angle with the further tipping normal and are refracted downward more sharply, and 
so on. Below the center, the light rays are refracted upward more and more sharply as the distance from the center 
increases. The overall result is that the light rays converge on the other side of the lens, meeting at a focus.   
  
    A smoothed-out double prism of the type just described has the shape of a lentil seed and is therefore called a lens 
(from the Latin word for such a seed). By extension, any piece of glass or other transparent material with at least one 



curved surface is called a lens.   
  
    Both surfaces are convex in the particular type of lens that resembles a smoothed-out double prism. Such a lens is 
therefore a biconvex lens. This is the kind that resembles a lentil seed; it is the most familiar kind and, in fact, is what the 
average man will at once picture if asked to think of a lens.   
  
    It is not necessary for the two surfaces of a lens to be evenly curved. One surface might be less convex than the other, 
or it might even be flat. In the latter case, the lens is plano-convex. One of the surfaces can be concave for that matter 
(concavo- convex) so that a cross section of the lens looks something like a crescent moon. Such a lens may be called a 
meniscus (from a Latin word meaning "little moon"). Whatever the comparative shapes of the surfaces of the lens, light 
rays will be made to converge on passing through it, if the thickness of the lens is least at the edge and increases to 
maximum at the center. All such lenses can be lumped together as convex lenses or converging lenses.   
  
    The behavior of a convex lens neatly fits that of a convex mirror. The light reflected from a convex mirror diverges, 
but if we imagine that the lines of the diverging ray are carried forward through the mirror, they will come to a focus on 
the other side; it is there that the virtual (upright) image is formed. In the case of a convex lens, light actually passes 
through and converges to a real focus where a real (inverted) image is formed. Because the image is real, light is 
concentrated and the ability of a lens to concentrate sunlight and start fires is well known.   
  
    The thicker the central bulge in a converging lens in relation to its diameter, the more sharply the rays of light are 
converged and the closer the focus is located to the lens itself--that is, the shorter the focal length (the distance from the 
focus to the center of the lens). A lens with a short focal length, which more drastically bends the light rays out of their 
original direction, is naturally considered a more powerful lens.   
  
    The strength of a lens is measured in dioptors (from Greek words meaning "to see through"), which are obtained by 
taking the reciprocal of the focal length in meters. If the focal length is 1 meter, the lens has a power of 1/1or 1 diopter. A 
focal length of 50-centimeters, or 0.5 meters, implies a power of 1/0.5, or 2 diopters. The larger the diopter value, the 
more powerful the lens.   
  
    A lens can be concave on both sides (a biconcave lens) so that it is thickest at the edges and thinnest in the center. It 
may be plane on one side (plano-concave) or even convex (convexo-concave). As long as it is thinnest in the center, it 
may be considered a concave lens. Since a parallel sheaf of light rays passing through any concave lens diverges after 



emerging on the other ride, such lenses may also be called diverging lenses.   
  
    Here again, the properties of a concave lens and a concave mirror fit neatly. Light rays reflected from a concave mirror 
converge to a focus. If we imagine that the converging rays are carried through the mirror, they will diverge on the other 
side. In a concave lens, the light actually does pass through and diverge.   
  
    In the case of a concave lens, since the light passes through and diverges it forms no image. However, the diverging 
light rays can be carried backward in imagination to form a virtual image on the forward side, where a concave mirror 
would have formed a real one.   
  
    The power of a diverging lens is arrived at in a manner similar to that in which the power of a converging lens is dealt 
with. However, in the case of a diverging lens, a virtual focus is involved, and the focal length therefore has a negative 
value. A diverging lens would be said to have a power of -2 diopters, for instance.  
  
Spectacles   
  
    There is a lens-shaped object within the human eye, just behind the pupil, which is called the crystalline lens (not 
because it contains crystals, but because, in the older sense of the word "crystalline." it is transparent). It is a biconvex 
lens, and therefore a converging lens, about a third of an inch in diameter. The foremost portion of the eye, the 
transparent cornea, is also a converging lens, with twice the converging power of the crystalline lens itself.   
  
    The cornea and crystalline lenses converge the light rays to a focus upon the light-sensitive inner coating (retina) of the 
rear of the eyeball. An inverted image terms on the retina, and the pattern of light and dark is imprinted there. Each light-
sensitive cell in the retina's center (where the image of what we are looking at is formed) is connected to an individual 
nerve fiber, so the pattern is carried without loss of detail to the brain. The brain makes allowance for the inversion of the 
image, and we see right-side-up.   
  
    The image formed by a converging lens cannot, however, always be counted upon to fall upon the focus (which, 
strictly speaking. is the point at which a sheaf of parallel rays of light are made to converge). Where the light source is far 
away, the rays are indeed parallel or virtually so, and all is well. As the light source is brought nearer to the lens, 
however, the light rays are more and more perceptibly divergent, and they then converge beyond the focus--that is, at a 
distance greater than the focal length.   



  
    The relationship between the distances of the object serving as the light source D(0), of the image D(1), and of the 
focus (f) can be expressed by means of Equation 2-2. In the previous chapter, this equation was used in connection with 
mirrors, but it will serve for lenses, too. In fact, it is so commonly used for lenses rather than for mirrors that it is usually 
called the lens formula. (In both lenses end mirrors a virtual focus yields a negative value for f and 1/f; and a virtual 
image, a negative value for D(1),  and 1/ D(1).  On the other hand, D(0), and 1/ D(0), are always positive. ) Let us 
rearrange the lens formula and write it as follows:   
  
1/D(1)  = 1/f   -   1/D(0)                                                                        (Equation 3-1) 
  
If the object is at an infinite distance, 1/ D(0) = 0, and 1/ D(1)  = 1/f, which means that D(1) = f. The image, therefore, is 
formed at the focus. But let us suppose that the focal length of the cornea-lens combination of the eye is about 1.65 
centimeters (which it is) and that we are looking at an object 50 meters (or 5000 centimeters) away. In that case, 1/D(1) = 
1/1.65 - 1/5000, and D(1) = 1.6502. The image forms 0.0002 centimeters beyond the focus, a discrepancy that is small 
enough to be unnoticeable. Thus, a distance of 50 meters is infinite as far as the eye is concerned.  
  
But what if the object were 30 centimeters away--reading distance? Then 1/D(1)= 1/1.65 - 1/30, and D(1) = 1.68. The 
image would form about 0.03 centimeters behind the focus, and on the scale of the eye that would be a serious 
discrepancy. The light would reach the retina (at the focal length) before the light rays had focused. The image would not 
yet be sharp, and vision would be fuzzy.  
  
To prevent this, the crystalline lens changes shape through the action of a small muscle. It is made to thicken and become 
a more powerful light-converger. The focal length shortens. The image, still forming beyond the new and now shorter 
focal length, forms on the retina. This process is called accommodation.  
  
As an object comes nearer and nearer the eye, the crystalline lens must bulge more and more to refract the light 
sufficiently to form the image on the retina. Eventually it can do no more, and the distance at which accommodation 
reaches its limit is the near point. Objects closer to the eye than the near point will seem fuzzy because their image cannot 
be made to form on the retina. The ability to accommodate declines with age, and the near point then recedes. A young 
child with normal vision may be able to focus on objects as close to the eye as 10 centimeter; a young adult on objects 25 
centimeters away; while an old man may not be able to see clearly anything closer than 40 centimeters. In other words, as 
one grows older one starts holding the telephone book farther away. This recession with age of the near point is called 



presbyopia (from Greek words meaning "old man's vision").  
  
It may happen that a person's eyeball is deeper than the focal length of the cornea-lens combination. In such a case, the 
images of objects at a distance form at the focus, which is well in front of the too deep retina. By the time the light rays 
reach the retina, they have diverged a bit and vision is fuzzy. As objects come closer, the image is formed at distances 
greater than the focal length, and these eventually do fall on the retina. Such people can clearly see near objects but not 
distant ones; they are nearsighted. More formally, this is called myopia.  
  
The opposite condition results when an eyeball is too shallow. The focal length is greater than the depth of the eyeball, 
and the light rays reaching the retina from objects at a great distance have not yet quite converged. The crystalline lens 
accommodates and bends the light more powerfully so that distant objects can be seen clearly after all. As an object 
approaches more closely, however, the power of lens accommodation quickly reaches its limit, and near objects can only 
be seen fuzzily. For such a person, the near point is abnormally far away, and although he can see distant objects with 
normal clarity, he cannot see near objects clearly. He is farsighted and suffers from hyperopia ("vision beyond")  
  
It is easy to produce a new overall focal length by placing one lens just in front of another. One need, then, only add the 
diopters of the two lenses to find the total refracting power of the two together, and therefore the focal length of the two 
together. Imagine a lens with a refracting power of 50 diopters. Its focal length would be 1/50 of a meter, or 2 
centimeters. If a second converging lens of 10 diopters were placed in front of it, the refracting power of the lens 
combination would be 60 diopters, and the new focal length would be 1/60 of a meter, or 1.667 centimeters. On the other 
hand, a diverging lens with a retracting power of -10 diopters would increase the focal length, for the two lenses together 
would now be 40 diopters and the focal length would be 1/40 meter of 2.5 centimeters.  
  
This can be done for the eye in particular and was done as early as the thirteenth-century by such men as the English 
scholar Roger Bacon (1214?-1294). The results are the familiar eye- glasses or spectacles, and these represent the one 
great practical; application of lenses that was introduced during the Middle Ages.  
  
The power of the cornea-lens combination of the eye is about 60 diopters, and the lenses used in spectacles have powers 
ranging from -5 to +5 diopters. For farsighted people with too-shallow eyeballs, the diopters must be increased so that 
focal length-is decreased. To increase the diopters, a lens with positive diopters (that is, a converging lens) must be 
placed before the eye. The reverse is the case for nearsighted individuals. Here the eyeball is too deep, and so the focal 
length of the eye must be lengthened by reducing the diopters. A lens with negative diopters (that is, a diverging lens) 



must be placed before the eye. 
  
For both farsighted and nearsighted individuals, the spectacle lens is usually a meniscus. For the former, however, the 
meniscus is thickest at the center; for the latter it is thinnest at the center.  
  
As old age comes on, the additional complication of presbyopia may make it necessary to apply two different corrections, 
one for near vision and one for far vision. One solution is to have two different types of spectacles and alternate them as 
needed. In his old age, it occurred to the American scholar Benjamin Franklin (1706-1790), when he grew weary of 
constantly switching glasses, that two lenses of different diopters, and therefore of different focal lengths, could be 
combined in the same frame. The upper portion might be occupied by a lens correcting for far vision, the lower by one 
correcting for near vision. Such bi-focals (and occasionally even trifocals) are now routinely produced.  
  
For a lens to focus reasonably well, its curvature must be the same in all directions. In this way, the rays that strike 
toward the top, bottom, and side of the lens are all equally converged toward the center, and all meet at a true focus.  
  
Suppose the lens curves less sharply from left to right than from top to bottom. The light rays at left and right would then 
not come to a focus at a point where the light rays from top and bottom would. At that point, instead of a dot of light, 
there would be a horizontal line of light. If one moves farther back, to a spot where the laggard rays from right and left 
have finally focused, the rays from top and bottom have passed beyond focus and are diverging again. Now there is a 
vertical line of light. At no point is there an actual dot of light. This situation is common with respect to the eyeball, and 
the condition is called astigmatism, (from Greek words meaning "no point"). This, too, can be corrected by using 
spectacles that have lenses with uneven curvatures that balance the uneven curvature of the eye, bending the light more in 
those directions where the eye itself bends it less.  
  
The usual lenses are ground to the shape of segments of spheres, since the spherical shape is the easiest to produce. Such 
a shape, even if perfectly even in curvature in all directions, still does not converge all the rays of light to an exact point, 
any more than a spherical mirror reflects all the rays to an exact point. There is spherical aberration here as well as in the 
case of mirrors.  
  
The extent of this aberration increases with the relative thickness of the lens and with distance from the center of the lens. 
For this reason, the lens formula (Equation 3-1) holds well only for thin lenses. Near the center of the lens, the spherical 
aberration is quite small and can usually be ignored. The human eye is fitted with an iris that can alter the size of the 



pupil. In bright light, the size of the pupil is reduced to a diameter of 1.5 millimeters. The light that enters is still 
sufficient for all purposes, and spherical aberration is reduced to almost nothing. In bright light, therefore, one sees quite 
clearly. In dim light, of course, it is necessary to allow as much light to enter the eye as possible, so the pupil expands to a 
diameter of as much as eight or nine millimeters. More of the lens is used, however, and spherical aberration increases. In 
dim light, therefore, there is increased fuzziness of sight.  
  
There are other types of aberration (including "chromatic aberration,"), but the usual way of correcting such aberrations 
in elaborate optical instruments is to make use of two lenses in combination (or a mirror and a lens) so that the aberration 
of one will just cancel the aberration of the other. By a clever device of this sort, in 1930 a Russian-German optician, 
Bernard Schmidt (1879-1935) invented an instrument that could without distortion take photographs over wide sections 
of the sky because every portion of its mirror had had its aberrations canceled out by an irregularly shaped lens called a 
"corrector plate." (Such an instrument is called a Schmidt camera or a Schmidt telescope.)  
  
Camera 
  
Images can be formed outside the eye, of course, as well as inside. Consider a single point in space and an object, some 
distance away, from which light is either being emitted or reflected. From every part of the object a light ray can be 
drawn to the point and beyond. A ray starting from the right would cross over to the left once it had passed the point, and 
vice verse. A ray starting from the top would cross over to the bottom once it had passed the point, and vice verse.  
  
Suppose the rays of light, having passed the point, are allowed to fall upon a dark surface. Light rays from a brightly 
emanating (or reflecting) portion of the light source would yield bright illumination; light rays originating from a dimly 
lit portion would yield dim illumination. The result would be a real and invented image of the light source. 
  
 Actually, under ordinary conditions we cannot consider a single point in space, since there are also a vast number of 
neighboring points through which rays from every portion of the light source can be drawn. There are, therefore, a vast 
number of inverted images that will appear on the surface, all overlapping, and the image is blurred out into a general 
illumination; in effect, no images are formed.  
  
But suppose one uses a closed box with a hole on the side facing the light source, and suppose one imagines the hole 
made smaller and smaller. As the hole is made smaller, the number of overlapping images is continually being reduced. 
Eventually an image with fuzzy outlines can be made out on the surface opposite the hole, and if the hole is made quite 



small, the image will be sharp. The image will remain sharp no matter what the distance between the hole and the surface 
on which it falls, for there is no question of focusing since the image is formed of straight-line rays of light that are un-
refracted. The farther the surface from the hole the larger the image, since the rays continue to diverge with increasing 
distance from the hole. However, because the same amount of light must be spread over a larger and larger area, the 
image grows dimmer as it grows larger.  
  
On a large scale, this can be done in a dark room with the windows thickly curtained except for one small hole. On the 
opposite wall an image of whatever is outside the hole will appear --a landscape, a person, a building--upside down, of 
course.  
  
The sun shining through such a hole will form a circle that is actually the image of the sun, and not of the hole. If the hole 
were triangular in shape but not too small, there would be a triangular spot of light on the wall, but this triangle would be 
made up of circles, each one of which would be a separate image of the sun. As the hole grows smaller, so does the 
triangle, until it is smaller than an individual circular image of the sun. At that point, the image will appear a circle 
despite the triangularity of the hole.  
  
The leaves of a tree form a series of small (though shifting) opening through which sunlight streams. The dappled light on 
the ground then shows itself as small superimposed circles, rather than reproducing the actual irregular spaces between 
the leaves. During a solar eclipse, the sun is no longer round but is bitten into and, eventually, shows a crescent shape. 
When this takes place, the superimposed circles of light under the tree becomes superimposed crescents. The effect is 
quite startling.  
  
Image-formation in dark rooms began in early modern times, and such Italian scholars as Giambattista della Ports 
(1538?- 1615) and Leonardo da Vinci (1452-1519) made use of it. The device is called a camera obscura, which is a Latin 
phrase meaning "dark room." Eventually other devices for producing images within a darkened interior were used, and 
the first part of the phrase, "camera." came to be applied to all such image-forming devices. The original camera obscure, 
with its very small opening, is now commonly called a pinhole camera.  
  
The chief difficulty with a pinhole camera is that to increase the sharpness of the image one must keep the hole as small 
as possible. This means that the total amount of light passing through the hole is small, and the image is dim. To widen 
the opening and allow more light to enter, and yet avoid the superimpositions that would immediately destroy the image, 
one must insert a converging lens in the opening. This will concentrate the light from a large area into a focus, increasing 



the brightness of the image many times over without loss of sharpness. In 1599, della Ports described such a device and 
invented the camera as we now know it.  
  
Once a camera is outfitted with a lens, the image will no longer form sharply at any distance, but only at the point where 
the light rays converge. For cameras of fixed dimensions, sharp images may be formed only of relatively distant objects, 
if the back of the camera is at the focal length. For relatively close objects, the light rays converge at a point beyond the 
focal length and the lens must be brought forward by means of an accordion like extension (in old-fashioned cameras) or 
by means of a screw attachment (in newer ones). This increases the distance between the lens and the back of the camera, 
and is the mechanical analog of the eye's power of accommodation.  
  
In an effort to make out objects in the middle distance, people who are nearsighted quickly learn that if they squint their 
eyes they can see more clearly. This is became the eye is then made to approach more closely to the pinhole camera 
arrangement, and a clear image depends less on the depth of the eyeball. (Hence "myopia" is the term used for 
nearsightedness, for this comes from a Greek phrase that means 'shut-vision" with reference to the continual squinting.) 
Of course, the difficulty is that less light then enters the eye, so sharper focus is attained at the expense of brightness. 
Furthermore, the muscles of the eyelids tire of the perpetual task of keeping them somewhat but not altogether closed; the 
result is a headache. (Actually, it is "eye-muscle strain" and not 'eyestrain" that causes the discomfort.) 
  
The lensed camera came of age when methods were discovered for making a permanent record of the image. The image 
is formed upon a surface containing chemicals that are affected by light. A number of men contributed to this, including 
the French physicist Joseph Nicephore Niepce (1765-1833), the French artist Louis Jacques Mande Daguerre (1789-
1851), and the English Inventor William Henry Fox Talbot (1800-1877). By the mid-nineteenth century, the camera as 
producer and preserver of images was a practical device, and photography (“writing by light") became of infinite use in 
every phase of scientific work.  
  
To get bright images, as much light as possible must be squeezed together. This requires a lens of large diameter and 
short focus. The larger the diameter, the more light is gathered together and converged into the image. The reason for the 
short focus depends on the fact (already discussed in connection with mirrors and a point applicable in the case of lenses 
as well) that the closer the image to the lens, the smaller it is. The smaller the image into which a given quantity of light is 
focused, the brighter it is. To measure the brightness of the image that a lens can produce, we must therefore consider 
both factors and take the ratio of the focal length (f) to the diameter (D). This ratio, f/D, is called the f-number. As one 
decreases f or increases D (or both), the f-number decreases. The lower the f-number, the brighter the image.  



  
The image, as originally formed on chemically-coated film, is dark in spots where intense illumination has struck (for the 
effect of light is to produce black particles of metallic silver) and light where little illumination has struck. The image 
therefore appears in reverse--light where we see dark and dark when we see light. This is a negative. If light is projected 
through such a negative onto a paper coated with light-sensitive chemicals, a negative of the negative is obtained. The 
reversal is reversed, and the original light-dark arrangement is obtained. This positive is the final picture.  
  
The positive may be printed on transparent film. In that case, a small but intense light source may be focused upon it by a 
lens and mirror combination, and the image projected forward onto a screen. The rays diverge after leaving the projector, 
and the image on the screen can be greatly enlarged, as compared with the original positive. This can be used for home 
showing of photographs, and has been used, far more importantly; as a means of mass entertainment.   
  
   The possibility for this arise from the fact that when the cells of the retina react to a particular pattern of light and dark, 
it takes them a perceptible fraction of a second to recover and be ready for another pattern. If, in a dark room, you wave a 
long splint, smoldering at the far end, you will not see a distinct point of light changing position, but a connected curve of 
light out of which you can form circles and ovals.   
  
    Imagine, then, a series of photographs taken very rapidly of moving objects. Each photograph would show the objects 
in slightly different positions. In 1889, the American inventor Thomas Alva Edison (1847-1931) took such photographs 
on a continuous strip of film with perforations along the side. Such perforations could be threaded onto a sprocket wheel, 
which, when turning, would pull the film along at a constant velocity. If a projector light could be made to flash on and 
oh rapidly, it would flash onto the screen a quick image of each passing picture. The eye would then sec one picture after 
another, each just slightly different from the one before. Because the eye would experience its lag period in reaction, it 
would still be seeing one picture when the next appeared on the screen. In this way, an illusion of continual change, or 
motion, is produced. Thus, motion pictures were introduced.  
  
Magnification   
  
    Anyone who has handled a converging lens knows that objects viewed through it appear larger. It is very likely that 
this was known in ancient times, since a round glass bowl filled with water would produce such an effect.   
  
    To understand this; we must realize that we do not sense the actual size of an object directly, but merely judge that size 



from a variety of indirect sensations, including the angle made by light reaching the eye from extreme ends of the object.  
  
    Suppose, for instance, that a rod 4 centimeters long is held horizontally 25 centimeters in front of the eyes. The light 

reaching the eye from the ends of the rod makes a total angle of about 9.140. In other words, if we looked directly at one 

end of the rod, then turned to look directly at the other end, we would have turned through an angle of 9.140. This is the 
visual angle, or the angular diameter of an object. 
  
  

If the rod were only 2 centimeters long, the visual angle would be 4.580 if it were 8 centimeters long, it would be 18.180. 
The visual angle is not exactly proportional to the size, but for small values it is almost exactly proportional. We learn 
this proportionality through experience and automatically estimate relative size by the value of the visual angle.   
  
    However, the regular size of any object is also a function of its distance. Consider the eight-centimeter rod that at 25 

centimeters would exhibit a visual angle of 18.180. At 50 centimeters its visual angle would be 9.140 at 100 centimeters, 

4.580. In other words, as we also know from experience, an object looks smaller and smaller as it recedes from the eye. A 
large object far distant from the eye would look smaller than a small object close to the eye. Thus, an eight-centimeter rod 
100 centimeters from the eye would produce a smaller visual angle than a four-centimeter rod 25 centimeters from the 
eye, and the former would therefore appear smaller in size.   
  
    It is not likely that we would be fooled by this. We learn at an early age to take distance, as well as visual angle, into 
account in assessing the real size of an object. In looking first at the distant eight-centimeter rod then at the close by four-
centimeter rod, we must alter the accommodation of the crystalline lens, and we must also alter the amount by which our 
eyes have to converge in order for both to focus on the same object (the closer the object, the greater the degree of 
convergence). We may not be specifically aware that our lenses are accommodating and our eyes converging; however, 
we have learned to interpret the sensations properly, and we can tell that the four-centimeter rod is closer. Making 
allowance for that as well as for the visual angle, we can usually tell without trouble that the rod that looks smaller is 
actually larger. We even convince ourselves that it looks larger.   
  
    Alterations in the accommodation of the lens and the convergence of the eyes are of use only for relatively nearby 
objects. For distant objects, we judge distance by comparison with neighboring objects whose real size we happen to 
know. Thus a distant sequoia tree may not look unusually large to us until we happen to notice a tiny man at its foot. We 



then realize how distant it must be, and its real size is made apparent. It begins to look large.   
  
    It there are no neighboring objects of known size with which to compare a distant object, we have only the visual 

angle, and that by itself tells us nothing. For instance, the moon, high in the sky, presents a visual angle of roughly 0.50. 
If we try to judge the real diameter of the moon from this, we are lost. We might decide that the moon looked "about a 

foot across." However, an object a foot across will produce a visual angle of 0.50 if it is not quite sixty feet away. This is 
certainly a gross underestimate of the actual distance of the moon, yet many people seem to assume, unconsciously, that 
that is the distance.   
  
    When the moon is near the horizon, it is seen beyond the houses and trees, and we know at once that it must be more 

than sixty feet away. It might be, let us say, a mile away. To produce a visual angle of 0.50 from a distance of a mile, the 
moon would have to be 88 feet across. This (unconscious) alteration in our estimate of the moon's distance also alters our 
(unconscious) estimate of its real size. The moon, as all of us have noticed, seems much larger at the horizon than when it 
is high in the sky. This optical illusion has puzzled men ever since the time of the Greeks, but the present opinion of men 
who have studied the problem is that it is entirely a matter of false judgment of distance.   
  
    A converging lens offers us a method for altering the visual angle without altering the actual distance of an object. 
Consider light rays traveling from an object to the eye and making a certain visual angle. If, on the way, they pass 
through a converging lens, the light rays are converged and make a larger visual angle. The eye cannot sense that light 
rays have been converged en route; it judges the light rays as though they came in straight lines from an object larger than 
the real object. Only by sensing the object as enlarged, can the eye account for the unusually large visual angle. Another 
way of putting it is that the eye sees not the object but an enlarged virtual image (hence right-side-up) of the object on the 
other side of the converging lens. The ratio of the size of the image to the size of the object itself is the magnification of 
the lens.   
  
    The magnification can be expressed in terms of the focal length (f) of the lens, provided we turn once more to the lens 
equation (Equation 2-2 , or 3-1). Since the image is a virtual image, its distance D(1)receives a negative sign, while the, 
distance of the object itself D(0) remains positive, as always. The equation can be written then:   
  
1/ D(0)  - 1/ D(1)   = 1/f                                         (Equation 3-2)   
  



    The magnification, as I have said, is the ratio of the size of the image to the size of the object, but this size ratio can be 
judged in two ways. It can be interpreted as the ratio of the visual angles, if both object and image are at the same 
distance; or as the ratio of the distances, if both object and image produce the same visual angle. Let us take the latter 
interpretation and solve Equation 3-2 for the ratio bf the distance of the image to that of the object D(1)/ D(0). It turns out 
that:   
  
D(1) / D(0) = f / [f - D(0)]  = m  (Equation 3-3) where m is the magnification.   
  
    If the lens is held in contact with the object, which maybe a printed page, for instance, D(0) is virtually zero and f – D
(0) = f. The magnification m is then equal to f/f or 1, and the print is not magnified. If the lens is lifted, D(0) increases, 
which means that f – D(0) must decrease and, as you can see from Equation 3-3, m must, in consequence, increase. The 
print seems larger and larger as the lens is lifted. When the distance of the lens from the printed page is equal to the focal 
length, f – D(0) becomes equal to f – f, or 0. Magnification is then f/0 and becomes infinite. However, no lens is perfect, 
and if the object is magnified infinitely, so are all the imperfections. As a result, all that can be seen is a blur. Maximum 
practical magnification comes when the distance of the object is just a little short of the focal length.   
  
    If the object is at a distance greater than the focal length, f – D(0) becomes negative and therefore m becomes negative, 
As D(0) continues to increase in size, m remains negative, but its absolute value (its value with the negative sign 
disregarded) becomes smaller this means that the image becomes inverted and decreases in size again as the object 
distance becomes greater than the focal length and continues to increase.   
  
    It also follows from Equation 3-3 that, for a given distance of the object D(0, the magnification increases with decrease 
in the focal length of the lens (provided the focal distance remains greater than the distance of the object). To see this, let 
us suppose that D(0) = 1 and that f takes up successive values of 5, 4, 3 and 2. Since the magnification (m) is equal to f / 
[f - D(0)], it equals, successively, 5/4, 4/3, 3/2 and 2/l; or 1.2, 1.33, 1.5 and 2.0. This is another reason for considering a 
converging lens to grow more powerful as its focal length decreases. After all, its magnifying power increases as its focal 
length decreases.   
  
    All this is reversed for diverging lenses. Here the rays of light converging on their trip to the eye from opposite ends of 
an object are diverged somewhat by the lens and made to reach the eye at a smaller visual angle. For that reason, objects 
seem smaller when viewed through a diverging lens,   
  



    In this way, you can quickly tell whether a person is near-sighted of farsighted by an extremely simple test with his 
glasses. A nearsighted man must wear diverging leases, so print looks smaller if those lenses are held a few inches above 
the printed page. A farsighted man must wear converging lenses, and those will make the print appear larger. 
  
  
Microscopes and Telescopes   
  
    The cells of the retina either "fire" as light strikes them, or do not fire as light does not strike them. As a result, the 
image that is produced upon them is, so to speak, a combination of light and dark spots. This resembles the appearance of 
a newspaper halftone reproduction, though the "spots" on the retina are much finer than those on a newspaper 
photograph.   
  
    When an object is considerably larger than the spots that make it up the object is seen clearly. If it is not much larger, it 
is seen fuzzily. Thus, if you look at a newspaper photograph with the unaided eye, you will seem to see a clearly 
delineated face. If you look at it under a magnifying lens, the portion you see in the lens will not be much larger than the 
magnified dots, and things will not be clear at all. You will not make out "detail."   
  
    In the same way, there is a limit to the amount of detail you can see in any object with the unaided eye. If you try to 
make out finer and finer details within the object, those details begin to be no larger (in the image on your retina) than the 
dots making up the image. The retinal image becomes too coarse for the purpose.   
  
    Light from two dots separated by an angular distance of less than a certain crucial amount activates the same retinal 
cell or possibly adjacent ones. The two dots are then seen as only a single dot. It is only when light from two dots 
activates two retinal cells separated by at least one inactivated cell that the two dots can actually be seen as two dots. At 
25 centimeters (the usual distance for most comfortable seeing) two dots must be separated by at least 0.01 centimeters to 

be seen as two dots; the minimum visual angle required is therefore something like 0.0060.   

  
    The resolving power of the human eye (its ability to see two closely-spaced dots as two dots and, in general, its ability 
to make out fine detail) is actually very good and is much better than that of the eyes of other species of animal. 
Nevertheless, beyond the resolving power of the human eye there is a world of detail that would be lost to our knowledge 
forever, were it not for lenses.   
  



    Suppose two dots, separated by a visual angle of 0.0010, were placed under a lens with a magnification of 6. The visual 

angle formed by those two dots would be increased to 0.0060, and they could be seen as two does. Without the lens they 
could be seem as only one dot, in general, an enlarging lens not only makes the object larger in appearance, it makes 
more detail visible to the eye.   
  
    To take advantage of this, one must use good lenses that have smoothly ground surfaces and are free of bubbles and 
imperfections. A lens that is not well constructed will not keep the refracted light rays in good order, and the image, 
though enlarged, will be fuzzy. Fine detail will be blurred out end lost.   
  
    It was not until the seventeenth century that lenses accurate enough to keep at least some of the fine detail were 
formed. A Dutch merchant, Anton van Leeuwenhoek (1632-1723), used small pieces of glass (it is easier to have a 
flawless small pin of glass than a flawless large one) and polished them so accurately and lovingly that he could get 
magnifications of more than 200 without lost of detail. With the use of such lenses, he was able to see blood capillaries, 
and blood corpuscles, and spermatozoa. Most important of all he could study the detail of independently living animals 
(protozoa) too small to be made out with the naked eye.   
  
    Such strongly magnifying leases are microscopes (from Greek words meaning "to see the small"). A microscope made 
out of a single lens, as Leeuwenhock's were, is a simple microscope,   
  
    There is a limit to the magnifying power of a single lens, however well ground it may be. To increase the magnifying 
power, one must decrease the focal length, and Leeuwenhoek was already using minute focal lengths in his tiny lenses. It 
would be impractical to expect much further improvement in this respect.   
  
    However, suppose the light from an object is allowed to pass through a converging lens and form a real image on the 
other side. As in the case of concave mirrors, this real image may be much larger than the object itself, if the object is 
quite near the focus. (The image would then be much dimmer because the same amount of light would be spread over a 
greater area. For this reason, the light illuminating the object must be quite intense in the first place, in order to remain 
bright enough despite this dimming effect.)   
  
    Since the image is a real image, it can be treated optically as though it were the object itself. A second converging lens 
can be used that will further magnify the already-magnified image. By the use of two or more lenses in this way, we can 
easily obtain a final magnification that will be greater than the best one can do with a single lens. Microscopes using 



more than one lens are called compound microscopes.   
  
    The first compound microscopes are supposed to have been built a century before Leeuwenhoek by a Dutch spectacle 
maker, Zacharias Janssen, in 1590. Because of the imperfect lenses used, it took quite a while for these to be anything 
more than playthings. By the end of Leeuwenhock's life, however, compound microscopes were beginning to surpass 
anything his simple lenses could do.   
  
    The telescope (from Greek words meaning "to see the distant") also makes use of lenses. Light from an object such as 
the moon, let us say, is passed through a converging lens and allowed to form a real image on the other side. This image 
is then magnified by another lens. The magnified image is larger and shows more detail than the moon itself does when 
viewed by the naked eye.   
  
    A telescope can be used on terrestrial objects, too. Here, since the real image formed through the converging lens is 
inverted, and it would be disconcerting to see a distant prospect with the ground above and the sky below, two lenses are 
used to form the image, the second lens inverting the inverted image and turning it right-side-up again. This new right-
side-up image can then be magnified, and we have a field glass for use on landscapes. Small field glasses, designed in 
pairs to be looked through with both eyes at once are opera glasses.   
  
    Astronomical telescopes do not make use of the additional lens, since each lens introduces imperfections and problems, 
and the fewer lenses the better. An upside-down star or moon does not disconcert an astronomer, and he is willing to let 
the image remain that way.   
  
    The telescope is supposed to have been invented by an apprentice-boy in the shop of the Dutch spectacle maker Hens 
Lippershey in about 1608. The next year, the Italian scientist Galileo Galilei (1564-1642), concerning whom I had 
occasion to speak at length in the first volume of this book, hearing rumors of this new device, experimented with lenses 
until he had built a telescope. His instrument was exceedingly poor in comparison with modern ones; it only enlarged 
about thirty fold. However, in turning it on the sky, he opened virgin territory, and wherever he looked, he saw what no 
man had ever seen before.   
  
    The greater detail visible on the image of the moon made it possible for him to see lunar mountains and craters. He saw 
spots on the sun and enlarged both Jupiter and Venus into actual globes. He could see that Venus showed phases like the 
moon (as was required by the Copernican theory) and that Jupiter was circled by four satellites.   



  
    The lens of a telescope also serves as a light-collector. All the light that falls upon the lens is concentrated into the 
image. If the lens is larger than the pupil of the eye (and in a telescope it is bound to be), more light will be concentrated 
into the image within the telescope than is concentrated into the image within the eye. A star that is too dim to be made 
out by the unaided eye becomes bright enough therefore to be seen in a telescope. When Galileo turned his telescope on 
the starry sky, he found a multiplicity of stars that were plainly visible with the telescope and that vanished when he took 
the instrument from his eye. 
  
    Naturally, the larger the lens, the more light it can collect, and the dimmer the stars it can make out. The Yerkes 
telescope of today (a distant descendant of the first Galilean telescope) has a collecting lens 40 inches in diameter, as 
compared with the pupil's diameter of no more than 1/3 of an inch. The ratio of the diameters is thus 120 to 1. The light 
collected depends on the area of the lens, and this is proportional to the square of the diameter. The light-collecting power 
of the Yerkes telescope is therefore 14,400 times as great as that of the human eye, and stars correspondingly dimmer can 
be made out by it.   
  
    Furthermore, if the light from the telescope is focused on photographic film, rather than on the retina of the eye, there 
is a further advantage. Light striking the film has a cumulative effect  (which it does not have on the eye). A star too dim 
to be seen, even through the telescope, will slowly affect the chemicals on the film and after an appropriate time 
exposure, can be photographed even if it cannot be seen.   
  
    In theory, lenses can be made larger and larger, and the universe probed more and more deeply. However, practical 
considerations interfere. The larger the lens, the more difficult and tedious it is to grind it exactly smooth and the more 
difficult it is to keep it from bending out of shape under its own weight (since it can only be supported about the rim). In 
addition, the larger the lens, the thicker it must be, and since no lens is perfectly transparent, the thicker it is, the more 
light it absorbs. After a certain point, it is impractical to build larger lenses. The telescope at the Yerkes Observatory in 
Wisconsin has a 40-inch lens and is the largest telescope of its sort in the world. It was built in 1897 and nothing larger 
has been built since. Nor is any likely to be built. 
  
  

CHAPTER 4 

Color 



  

 Spectra   

  

    So far, I have spoken of light as though all light were the same except that one beam might differ from another in 
brightness. Actually, there is another distinguishing characteristic, familiar to us all, and that is color. We know that there 
is such a thing as red light, blue light, green light, and so on through a very large number of tints and shades.   

  

    The tendency in early times was to consider the white light of the sun as the simplest form of light--as "pure" light 
(Indeed, white is still the symbol of purity, and the young bride walks to the altar in a white wedding gown for that 
reason.) Color, it was felt, was the result of adding impurity to the light. If it traveled through red glass, or were reflected 
from a blue surface, it would pick up redness or blueness and gain a property it could not have of itself.   

  

    From that point of view it would be very puzzling if one were to find the pure white light of the sun displaying colors 
without the intervention of colored matter at any time. The one such phenomenon known to men of all ages is the 
rainbow, the arc of varicolored light that sometimes appears in the sky, when the sun emerges after a rain shower. The 
rainbow was startling enough to attract a host of mythological explanations; a common one was that it was a bridge 
connecting heaven and earth. The first motion toward a rationalistic explanation was that of the Roman philosopher 
Lucius Annaeus Seneca (4 B.C.? - 65 A.D.), who pointed out that the rainbow was rather similar to the play of colors 
often seen at the edge of a piece of glass.   

  

    By the seventeenth century, physicists began to suspect that the rainbow, as well as the colors at the edge of glass, were 
somehow produced by the refraction of light The French mathematician Rene Descartes worked out a detailed 
mathematical treatment of the refraction and total reflection of light by spheres of water. In this way he could account 
nicely for the position of the rainbow with relation to the sun, thanks to the refraction of sunlight by tiny droplets of water 
remaining suspended in air after the rain, but he could not account for the color.   

  

    It was left for the English scientist Isaac Newton--whose work takes up so much of Volume I of this book--to make the 
crucial advance. In 1666, he allowed a shaft of sunlight to enter a darkened room and to fall on a prism. The beam of 
light, refracted through the prism, was allowed to strike a white surface. There it appeared not as a spot of white sunlight, 
but as an extended band of colors that faded into one another in the same order (red, orange, yellow, green, blue, violet) 
they do in a rainbow. It was a colored image and it received the name of spectrum, from the Latin word for "image."   

  



    It the light of the spectrum was formed on a surface with a hole in it, a hole so arranged that only one of the colors 
could pass through, and if that one beam of colored light was allowed to pass through a second prism, the color would be 
somewhat spread out but no new colors would appear.   

  

    Newton's contribution was not that he produced these colors, for that had been done before, but that he suggested a 
new explanation for them. The only ingredients that produced the spectrum were the pure white light of sunlight and the 
pure colorless glass of the prism. Newton therefore stated that despite the long-settled opinion of mankind white light was 
not pure, but a complex mixture of all the colors of the rainbow. It appeared white only because the combination so 
stimulated the retina as to be interpreted by the brain as "white."   

  

    As a point in favor of the validity of this view, there is Newton's reversal of spectrum formation. Newton allowed the 
light of the colored spectrum to fall upon a second prism held upside down with respect to the first. The light was 
refracted in the opposite direction and the situation was reversed. Where previously a round beam of white light had been 
spread out into a thick line of different colors, now that line was compressed back into a circle of white light.   

  

    Apparently, white light is composed of a vast assemblage of different varieties of light, each with its own characteristic 
way of being refracted. The group of varieties of light that were least refracted gave rise to the sensation of red; the next 
group, slightly more refracted, to the sensation of orange; and so on to the most refrangible varieties, which seemed 
violet.   

  

    White light, because of this difference in refrangibility of its components, always breaks into color on passing 
obliquely from one medium into another of different index of refraction. However, if the second medium is bounded by 
parallel interfaces (as an ordinary sheet of glass is) the effect produced on entering is canceled on leaving. For that reason 
white light entering a sheet of glass is white once more on leaving. When the edges of a transparent medium are not 
parallel, as in a prism, at the edge of a sheet of glass, or in the case of round water droplets, the color production process 
is not canceled, and a spectrum or a rainbow results.   

  

    This means that in determining the index of refraction of a transparent substance, the use of white light introduces an 
uncertainty, since a whole sheaf of indices of refraction is produced by the various colors present in the light. For that 
reason it is customary to make use of a particular colored light in determining indices of refraction. One device frequently 
used is a "sodium lamp," a device in which light is emitted by the heated sodium vapor within the bulb. This light is 
yellow in color and is refracted by an amount that varies only over a very small range.  



  

    By this view of light, it is easy to explain colored objects. It is not necessary to suppose that objects must be either 
fully transparent (transmitting all colors of light) or fully opaque (transmitting none of them). Some substances may well 
be opaque to some colors and transparent to others. Red glass, for instance, may possess a chemical admixture that will 
absorb colors other than red and allow red to pass through. In that case, white light passing through red glass becomes red 
in color, not because it has gained an impurity from the glass, but only because it has lost to the glass all its components 
but red. In the same way, an object may reflect some colors and absorb others, appearing colored to the eye for that 
reason.   

  

    It must not be supposed, however, that all yellow objects reflect only yellow light, or that all blue glasses transmit only 
blue light. It is important to distinguish between physical color and physiological color. A physical color can be identified 
by the amount of refraction it undergoes in passing from one substance into another. The physiological color is what our 
brain interprets it to be. The physiological mechanism in the retina of the eye works in such a fashion that a physical 
orange will give rise to the sensation of orange; therefore it will be a physiological orange as well. However, the retina 
may be activated in the same way by a mixture of colors that do not include physical orange--for instance, by a mixture of 
red and yellow. This mixture will then be physiological orange, too.   

  

    Light that is colored by transmission through colored glass or reflection from a colored surface need not actually 
contain the physical colors that correspond to the physiological ones we see. We can determine the physical color present 
by passing the light through a prism; for the physiological color our sight is sufficient, provided, of course, our color 
vision is normal.   

  

    In 1807, the English scientist Thomas Young (1773-1829) pointed out that red, green and blue could, in proper 
combination, give rise to the sensation of any other color. This was later amplified by the German physiologist Hermann 
Ludwig Ferdinand von Helmholtz (1821-1894) and is therefore called the Young-Helmholtz theory of color vision.   

  

    Many physiologists think that this ability of red, green and blue to create the entire spectrum is a reflection of the 
situation in the retina of the eye--that is, that there may be three types of color-sensitive retinal cells, one reacting most 
strongly to red, one to green, and one to blue. The extent to which a particular color of the spectrum or a particular 
mixture of colon activates each of the three gives rise, therefore, to the color sensation of which we become aware. Light 
that activates all three equally might then be interpreted as “white"; light that activates the three in one fixed ratio might 
be "yellow," in another “violet," and so on.   



  
     This is made use of in color photography. In one process, the film consists of triple layers, one of which contains a 
red-absorbing dye so that it is particularly sensitive to red light, another a dye sensitive to blue light, and the third a dye 
sensitive to green light. The light at each point of the image affects the three in a particular ratio and upon development 
produces at every point of the image a dye combination in a particular ratio of intensity. The dye combination affects the 
three pigments of our retina accordingly, and we see the color in the photograph as we would have seen it in the object 
itself.   
  
     Again, a colored print may be obtained by combining dots of a few different colors. Any color can be reproduced by 
varying the ratio of the colored dots represented. Under a magnifying glass the individual dots may be large enough to be 
seen in their true color, but if the individual dots cannot be resolved by the unaided eye, neighboring dots will affect the 
same retinal area and produce a combination or effects that result in the sensation of a color not actually in the dots 
themselves.   
  
     A similar situation is to be found on the screen of a color television set; The screen is covered by an array of dots, 
some of which react to light by shining blue, some by shining green, sad some by shining red. Each particular portion of 
the TV picture scanned and transmitted by the camera activates these dots in a particular brightness ratio, and we sense 
that ratio as the same color that was present in the original object. 
  
 Reflecting Telescopes   
  
     The fact that white light is a mixture of colors explained what had been observed as an annoying imperfection of the 
telescope. A parallel beam of light rays passing through a converging lens is brought to a focus on the other side of the 
lens. The exact position of this focus depends upon the extent to which the light is refracted on passing through the lens, 
and this at once introduces a complication, since white light consists of a mixture of colors, each with its own refractivity, 
and it is almost always white light we are passing through the lenses of telescopes and microscopes.   
  
     The red component of white light is least refracted on passing through the lens and comes to a focus at a particular 
point. The orange component being refracted to a somewhat greater extent comes to a focus at a point somewhat closer to 
the lens than the red light. The yellow light is focused closer still, and next follow green, blue and, closest of all, violet. 
This means that if the eye is so placed at a telescope eyepiece that the red component of the light from a heavenly body is 
focused upon the retina, the remaining light will be past its focal point and will be broader and fuzzier. The image of the 



heavenly body will be circled with a bluish ring. If the eye is placed so that the violet end of the spectrum is focused, the 
remaining light will not yet have reached its focus and there will be an orange rim. The best that can be done is to focus 
the eye somewhere in the center and endure the colored rims, which are in this way minimized but not abolished.   
  
This is called chromatic aberration, "chromatic" coming from a Greek word for color. It would not exist if light were 
taken from only a small region of the spectrum (such light would be monochromatic or "one color"), but a telescope or 
microscope must take what it gets--usually not monochromatic light.   
  
     Newton felt that chromatic aberration was an absolutely unavoidable error of lenses and that no telescope that 
depended on images formed by the refraction of light through a lens (hence, a refracting telescope) would ever be cleared 
of it. He set about correcting the situation by substituting a mirror for a lens. As was pointed out earlier in the book, a real 
image is formed by a concave mirror reflecting light, as well as by a convex lens transmitting light. Furthermore, whereas 
different colors of light are refracted through lenses by different amounts, all are reflected from mirrors in precisely the 
same way. Therefore, mirrors do not give rise to chromatic aberration.   
  
     In 1668, Newton devised a telescope making use of such a mirror; it was the first practical reflecting telescope. It was 
only six inches lone and one inch wide, but it was as good as Galileo's first telescope. Shortly thereafter, Newton built 
larger and better reflecting telescopes.   
  
     In addition to the lack of chromatic aberration, reflecting telescopes have additional advantages over refracting 
telescopes. A lens must be made of flawless glass with two curved surfaces, front and back, ground to as near perfection 
as possible, if the faint light of the stars is to be transmitted without loss and focused with precision. However, a mirror 
reflects light, and for this only the reflecting surface need be perfect. In a telescopic mirror it is the forward end that is 
covered with a thin, reflecting metallic film (not the rear end as in ordinary mirrors), so the glass behind the forward 
reflecting surface may be flawed and imperfect. It has nothing to do with the light; it is merely the supporting material for 
the metallized surface in front. Since it is far easier to get a large piece of slightly flawed glass than a large piece of 
perfect glass, it is easier to make a large telescopic mirror than a large telescopic lens--particularly since only one surface 
need be perfectly ground in a mirror, rather than two as in the case of the lens.   
  
     Again, light must pass through a lens and some is necessarily absorbed. The larger and thicker the lens, the greater the 
absorption. On the other hand no matter how large a mirror may be, the light is merely reflected from the surface, and 
virtually none is lost by absorption. Then too a lens can only be supported about the rim, since all other pans must be 



open to unobstructed passage of light: it becomes difficult to support a large, thick lens about the rim, for the center sags 
and this introduces distortion. The mirror on the other hand can be supported at as many points as may be desired.   
  
     The result is that all the large telescopes in the world are reflectors. The largest currently in operation is the 200-inch 
reflector, which went into operation in 1948 at Mount Palomar, California. Then there are the 120-inch reflector at Mount 
Hamilton and the 100-inch reflector at Mount Wilson, both in California. The Soviet Union has recently put a 103-inch 
reflector into use in the Crimea and has a 236-inch reflector under construction.   
  
     Compare this with the 40-inch refractor at Yerkes Observatory in Wisconsin, which has been the largest refractor in 
use since 1897 and is likely to remain so.   
  
     Nevertheless, even the reflectors have by and large reached their practical limit of size. The gathering and 
concentration of light implies a gathering and concentration of the imperfections of the environment--the haze in the air, 
the scattered light from distant cities, the temperature variations that introduce rapid variations in the refractivity of air 
and set the images of the stars to dancing and blurring.   
  
     For the next stage in optical telescopy, we may have to await the day (perhaps not very far off) when an astronomical 
observatory can be set up on the moon, where there is no air to absorb, refract and scatter the dim light of the stars, and 
where the astronomer (given the means for survival in a harsh environment) may well consider himself figuratively, as 
well as literally, in heaven.   
  
     But Newton was wrong in thinking that chromatic aberration in lenses was unavoidable. It did not occur to him to test 
prisms - made of different varieties of glass in order to see whether there were the same differences in refraction of the 
colors of light in all of them. What's more, he ignored the reports of those who did happen to test the different varieties 
(even Homer nods!).   
  
     The difference in degree of refraction for light at the red end and at the violet end of the spectrum determines the 
degree to which a spectrum is spread out at a given distance from the prism. This is the dispersion of the spectrum. The 
dispersion varies with different types of glass. Thus, flint glass (which contains lead compounds has a dispersion twice as 
great as crown glass (which does not contain lead compounds).   
  
     One can therefore form a converging lens of crown glass and add to it a less powerful diverging lens of flint glass. The 



diverging lens of flint glass will only neutralize part of the convergent effect of the crown glass lens, but it will balance 
all the dispersion. The result will be a combined lens not quite as convergent as the crown glass alone, but one that does 
not produce a spectrum or suffer from chromatic aberration. It is an achromatic lens (from Greek words meaning "no 
color"). The English optician John Dollond (1706-1761) produced the first achromatic refracting telescope in 1758. 
While it did not remove all the disabilities of refractors, it did make moderately large retractors practical.   
  
     The development of achromatic lenses was of particularly great importance to microscopy. There it was not practical 
to try to substitute mirrors for lenses and reflection for refraction. For that reason, microscopists had to bear with detail-
destroying chromatic aberration long after telescopists had been able to escape.   
  
     Through the efforts of the English optician Joseph Jackson Lister (1786-1869) and the Italian astronomer Giovanni 
Batida Amici (1786?-1863), microscopes with achromatic lenses were finally developed in the early nineteenth century. 
It was only there after that the smaller microorganisms could be seen clearly and that the science of bacteriology could 
really begin to flourish.  
  
Spectral Lines   
  
     Actually, we must not think of sunlight as being composed of a few different colors, as though it were a mixture of 
seven pigments. Sunlight is a mixture of a vast number of components separated by very slight differences in refractivity. 
For example, the red portion of the spectrum is not a uniform red but shades imperceptibly into orange.   
  
     In the rainbow and in simple spectra such as those that Newton formed, the light seems to be continuous, as though all 
infinite possible refractivities were present in sunlight. This is an illusion, however.   
  
     If a beam of light passes through a small hole in a blind, let us say, and then through a prism, a large number of 
circular images are formed, each imprinted in a variety of light of particular refractivity. These overlap and blend into a 
spectrum. If light of a certain refractivity were missing, neighboring images in either direction would overlap the spot 
where the missing refractivity ought to have been, and no gap would be visible.   
  
     The situation would be improved it the beam of light were made to pass through a narrow slit. The spectrum would 
then consist of a myriad of images of the slit, each overlapping its neighbor only very slightly. In 1802, the English 
chemist William Hyde Wollaston (1766-1828) did see a few dark lines in the spectrum, representing missing slit-images. 



He, however, felt they represented the boundary lines between colors and did not follow through.   
  
     Between 18 14 and 1824, however, a German optician, Joseph von Fraunhofer (1787-1826), working with particularly 
fine prisms, noticed hundreds of such dark lines in the spectrum. He labeled the most prominent ones with letter from A 
to G and carefully mapped the relative position of all he could find. Then spectral lines are, in his honor, sometimes 
called Fraunhofer lines.   
  
     Fraunhofer noticed that the pattern of lines in sunlight and in the light of reflected sunlight (from the moon or from 
Venus, for instance) was always the same. The light of stars, however, would show a radically different pattern. He 
studied the dim light .of heavenly objects other than the sun by placing a prism at the eyepiece al a telescope, and this was 
die first use of a spectroscope.   
  
     Fraunhofer's work was largely disregarded in his lifetime, but a generation later the German physicist Gustav Robert 
Kirchhoff (1824-1881) put the spectroscope to use as a chemical tool and founded the science of spectroscopy.   
  
     It was known to chemists that the vapors of different elements heated to incandescence produced lights of different 
color. Sodium vapor gave out a strongly yellow light; potassium vapor a dim violet light; mercury a sickly greenish light, 
and so on. Kirchoff passed such light through a spectroscope and found that the various elements produced light of only a 
few refractive varieties. There would only be a few images of the slit, spread widely apart, and this would be an emission 
spectrum. The exact position of each line could be measured against a carefully ruled background, and it could then be 
shown that each element always produced lines of the same color in the same place, even when it was in chemical 
combination with other elements. Furthermore, no two elements produced lines in precisely the same place.   
  
     The emission line spectrum could be used as a set of "finger-prints" for the elements, therefore. Thus, in 1959, 
Kirchhoff and his older collaborator, the German chemist Robert Wilhelm Bunsen (1811-1899), while heating a certain 
mineral to incandescence and studying the emission spectrum of the vapors evolved, discovered lines that did not 
correspond to those produced by any known element. Kirchhoff and Bunsen therefore postulated the existence of a new 
element, which they called cesium (from the Latin word for "sky blue," because of the sky-blue color of the brightest of 
the new lines they had observed). The next year they made a similar discovery and announced rubidium (from a Latin 
word for “dark red"). The existence of both metals was-quickly confirmed by older chemical techniques.   
  
     Kirchhoff observed the reverse of an emission spectrum. Glowing solids emit light of all colors, forming a continuous 



spectrum. If the light of a carbon-arc, for instance, representing such a continuous spectrum is allowed to pass through 
sodium vapor that is at a temperature cooler than that of the arc, the sodium vapor will absorb some of the light. It will, 
however, absorb light only of particular varieties-precisely those varieties that the sodium vapor would itself emit if it 
were glowing. Thus, sodium vapor when glowing and emitting light produces two closely spaced yellow lines that make 
up virtually the whole of its spectrum. When cool sodium vapor absorbs light out of a continuous spectrum, two dark 
lines are found to cross the spectrum in just the position of the two bright lines of the sodium emission spectrum. The 
dark lines represent the sodium absorption spectrum.   
  
     The dark lines in the solar spectrum seem to be an absorption spectrum. The blazing body of the sun is sufficiently 
complex in chemical nature to produce what is essentially a continuous spectrum. As the light passes through the 
somewhat cooler atmosphere, it is partially absorbed. Those parts that would be most strongly absorbed, and that would 
show up as dark lines in the spectrum, would correspond to the emission spectra of the elements most common in the 
solar atmosphere. Thus, there are prominent sodium absorption lines in the solar spectrum (Fraunhofer labeled them the 
"D line"), and this is strong evidence that sodium exists in the solar atmosphere.   
  
     In this way, a variety of elements were located in the sun. Indeed, one element, helium, was located in the sun a 
generation before it was found to exist on the earth. Even the composition of the distant stars could now be determined. 
While the details of the spectroscopic investigation of the heavens are more appropriately given in a book on astronomy, 
it might be well to say, in summary, that it was clearly shown that the heavenly bodies are made up of the same chemical 
elements that make up the earth--though not necessarily in the same proportions.   
  
     It also pointed up the dangers of setting limits to human endeavor. The French philosopher Auguste Comte (1798-
1857), in an attempt to give an example of an absolute limit set upon man's knowledge. said that it would be forever 
impossible for man to learn of what material the stars were composed. Had he lived but a few years longer, he would 
have seen his absolute limit easily breached.  
  
Diffraction   
  
     The discovery that while light was actually a mixture of many colors opened new and serious problems for physicists. 
As long as light could be taken to be an undifferentiated and pure phenomenon, geometrical optics was sufficient. Lines 
could be drawn representing light rays, and the phenomena of reflection and refraction could be analyzed without any 
consideration of what the nature of light might be. That question might be left for philosophers.   



  
     With light a mixture of colors, it became necessary to seek some explanation for the manner in which light of one 
color differed from light of another color. For that, the question of the nature of light in general had to be considered, and 
thus was born physical optics.   
  
     As was pointed out at the start of the book, then are two ways, in general, of avoiding the problem of action at a 
distance. One is to suppose particles streaming across a space that might then be considered as empty; the other is to 
suppose waves being propagated through a space that is not really empty. Both types of explanation were advanced for 
light in the latter half of the seventeenth century.   
The more direct of the two alternatives is the particle theory, which Newton himself supported. To begin with, this at 
once explains the rectilinear propagation of light. Suppose luminous objects are constantly firing tiny particles outward in 
all directions. If these particles an considered to be massless, a luminous body does not lose weight merely by virtue of 
being luminous, and light itself would not be affected by gravity. Light, when traveling in an unobstructed path, if 
unaffected by gravitational force, must travel in a straight path at a constant velocity, as required by Newton's first law of 
motion. The particles of light would be stopped and absorbed by opaque barriers, and speeding past the edge of the 
barrier, would cast a sharp boundary between the illuminated area beyond and the barrier-shaded area.   
  
     To Newton, the alternative of a wave theory seemed untenable. The wave forms that were familiar to scientists at the 
time were water waves and sound waves, and these do not necessarily travel in straight lines or cast sharp shadows. 
Sound waves curve about obstacles, as we know whenever we hear a sound around a corner; and water waves visibly 
bend about an obstacle such as a floating log of wood. It seemed reasonable to suppose that this behavior was 
characteristic of wave forms in general.   
  
     And yet the particle theory had its difficulties, too. Beams of light could cross at any angle without affecting each 
other in direction or color, which meant that the light particles did not seem to collide and rebound as ordinary particles 
would be expected to do. Furthermore, despite ingenious suggestions, there was no satisfactory explanation as to why 
some light particles gave rise to red sensations, some to green sensations, and so on. The particles had to differ among 
themselves, of course, but how?   
  
     Some of Newton's contemporaries, therefore, took up the wave theory Newton had discarded. The most vigorous 
supporter of the wave theory in the seventeenth century was the Dutch physicist Christiaan Huygens (1629-1695). He had 
no real evidence in favor of waves, but he bent his efforts to show that waves could be so treated as to fit the facts of 



geometric optics. In 16'78, he suggested that when a wave front occupies a certain line, each point on the front acts as a 
source of circular waves, expanding outward indefinitely. These waves melt together, so to speak, and a line can be 
drawn tangent to the infinite number of little circles centering about each point on the original wave front. This tangent is 
a picture of the new wave front, which serves as the starting region for another infinite set of circular waves to which 
soother overall tangent can be drawn, and so on.   
  
     If waves are analyzed in this fashion, through use of what is now called Huygen's principle, it can be shown that a 
wave front will travel forward in a straight line (at least if only its middle portion is considered) to be reflected with an 
angle of reflection equal to the angle of incidence, and so on. Furthermore, the waves themselves would have no mass 
and would be in virtually infinite supply, after the fashion of water waves and sound waves. Being nonmaterial, these 
light waver would not affect each other upon crossing (and indeed water waves and sound waves can cross each other 
without interference).   
  
     It seemed, then, that there was much to be said for and against each theory. One must therefore look for places where 
the two theories differ as to the nature of the phenomena they predict. Through an observation of conditions under which 
such phenomena should exist, one or the other theory (or conceivably both) may be eliminated. (This is the method 
generally used wherever theories conflict or overlap.)   
  
     For instance, Huygens' wave theory could explain refraction under certain conditions. Suppose a straight wave front of 
light strikes the plane surface of glass obliquely. One end of the wave front strikes the glass first, but suppose its progress 
is slowed as it enters the glass. In that car, when the next section of the front hits the glass, it has gained on the first 
section, for the second has been traveling through air, while the first has been traveling, more slowly, through glass. As 
each section of the wave front strikes, it is slowed and gained upon by the portion of the wave front that has not yet 
struck. The entire wave front is in this way refracted and, in entering the glass, makes a smaller angle with the normal; On 
emerging from the glass, the first section to emerge speeds up again and gains on those portions that have not yet 
emerged. The emerging light takes on its original direction again.   
  
     An analogy can be drawn between this and a line of marching soldiers leaving a paved highway obliquely and entering 
a plowed field. The soldiers leaving the highway are, naturally, slowed down; those first to enter the held are slowed 
down first, and the whole line of soldiers (if they make no effort to correct for the change in footing) must alter the 
direction of march toward the direction of the normal to the highway-field interface.   
  



     Thus, the wave theory can explain refraction by supposing that the velocity of light is less in glass than in air. By 
malting a further assumption, it can also explain spectrum formation. If light is a wave form, it must have a wavelength 
(the length from the crest of one wave to that of another. Suppose, then, that this wavelength varies with color, being 
longest at the red end of the spectrum and shortest at the violet end. It would seem reasonable then to suppose that short 
wavelengths are slowed more sharply on entering glass from air than are long wavelengths. (Again as an analogy, a 
marching soldier with a short stride would sink into the plowed field more times in c6vering a certain distance than would 
another soldier with a long stride. The short-striding soldier would then be slowed down more, and the marching line of 
soldiers if no effort were made to correct matters-would break up into groups marching in slightly different directions do 
pending on the length of their stride.)   
  
     In short, red light would be least refracted, orange next, and so on. In this way, light passing through a prism would be 
expected to form a spectrum.   
  
Newton could explain refraction by his particle theory, too, but he was forced to assume that the velocity of the panicles 
of light increased in passing from a medium of low optical density to one of high optical density. Here, then, was a clear-
cut difference in the two theories. One had only to measure the velocity of light in different media and note the manner in 
which that velocity changed; one could then decide between the Newtonian particles and the Huygensian waves. The 
only catch was that it was not until nearly two centuries after the time of Newton and Huygens that such a measurement 
could be made. 
  
     However, there was a second difference in the predictions of the theories. Newton's light particles traveled in straight 
lines in all portions of a light beam, so the beam might be expected to cast absolutely sharp shadows. Not so. Huygens' 
waves. Each point in the wave front served as a focus for waves in all directions, but through most of the wave front, a 
wave to the right from one point was canceled by a wave to the left from the neighboring point on the right, and so on. 
After all cancellations were taken into ac- count, only the forward motion was left 
  
There was an exception, however, at the ends of the wave front. At the right end, a right- ward wave was not canceled 
because there was no rightward neighbor to send out a leftward wave. At the left end, a leftward wave was not canceled, 
A beam of light, therefore, had to "leak" side-ways if it was a wave form. In particular, if a beam of light passed through 
a gap in an opaque barrier, the light at the boundary of the beam, just skimming the edge of the gap, ought to leak side-
ways so that the illuminated portion of a surface farther on ought to be wider than one would expect from strictly straight-
line travel.   



  
     This phenomenon of a wave form bending sideways at either end of a wave front is called diffraction, and this is, in 
fact, easily observed in water waves and sound waves. Since light, on passing through a gap in a barrier, did not seem to 
exhibit diffraction, the panicle theory seemed to win the nod. Unfortunately, what was not clearly understood in Newton's 
time was that the smaller the wavelength of any wave form, the smaller the diffraction effect. Therefore, if one but made 
still another assumption--that the wavelength of light waves was very small--the diffraction effect would be expected to 
be very hard to observe, and a decision might still be suspended.   
  
     As a matter of fact, the diffraction of light was observed in the seventeenth century. In 1665, an Italian physicist, 
Francesco Maria Grimaldi (1618?-1663), passed light through two apertures and showed that the final band of light on 
the surface that was illuminated was a trifle wider than it ought to have been if light had traveled through the two 
apertures in an absolutely straight fashion. In other words, diffraction had taken place.   
  
     What was even more important was that the boundaries of the illuminated region showed color effects, with the 
outermost portions of the boundary red and the innermost violet. This, too, it was eventually understood, fit the wave 
theory, for if red light had the longest wavelengths it would be most di8racted, while violet light, with the shortest 
wavelengths, would be least diffracted.   
  
     Indeed, this principle came to be used to form spectre. If fine parallel lines are scored on glass, each will represent an 
opaque region separated by a transparent region. There will be a series of gaps, at the edges of which diffraction can take 
place. In fact, if the gaps are very narrow, the glass will consist entirely of gap edges, so to speak. If the scoring is very 
straight and the gaps are very narrow, the diffraction at each edge will take place in the same fashion, and the diffraction 
at any one edge will reinforce the diffraction at all the others. In this was a spectrum as good as, or better than, any that 
can be formed by a prism will be produced. Lines can be scored more finely on polished metal than on glass. In such a 
case, each line is an opaque region separated by a reflecting region, and this will also form a spectrum (though ordinary 
reflection from unbroken surfaces will not).   
  
     The spectra formed by such diffraction gratings are reversed in comparison to spectra formed by refraction. Where 
violet is most refracted and red least, violet is least diffracted and red most. Consequently, if the spectrum in one case is 
"red-left-violet-right," it is "red-right-violet-left" in the other. More exactly, in the case of refraction spectre, red is nearest 
the original line in which light was, traveling, while violet is nearest the original line in the ease of diffraction spectre.   
  



      (Nowadays, diffraction gratings are used much more commonly than prisms in forming spectra. The first to make 
important use of diffraction gratings for this purpose was Fraunhofer, the man who first made thorough observations of 
spectral lines.)   
  
     Newton was aware of Grimaldi's experiments and even repeated them, particularly noting the colored edges. However, 
the phenomenon seemed so minor to him that he did not feel he could suspend the particle theory because of it, and so he 
disregarded its significance. More dramatic evidences of diffraction, and the ability to measure the velocity of light in 
different media, still remained far in the future. What it amounted to, then, was that physicists of the seventeenth century 
had to choose between two personalities rather than between two sets of physical evidence. Newton's great prestige 
carried the day, and for a hundred years afterward, throughout the eighteenth century, light was considered by almost all 
physicists to be indisputably particulate in nature. 
  
  

CHAPTER 5 

Light Waves 

  
Interference   
  
     The eighteenth century confidence in the existence of light particles came to grief at the very opening of the nineteenth 
century. In 1801, Young (of the Young-Helmholtz theory of color vision) conducted an experiment that revived the wave 
theory most forcefully.   
  
     Young let light from a slit fall upon a surface containing two closely adjacent slits. Each slit served as the source of a 
cone of light, and the two cones overlapped before falling on a screen.   
  
     If light is composed of particles, the region of overlapping should receive particles from both slits. With the particle 
concentration therefore doubled, the overlapping region should be uniformly brighter than the regions on the outskirts 
beyond the overlapping, where light from only one cone would be received. This proved not to be so. Instead, the 
overlapping region consisted of stripes--bright bands and dim bands alternating.   
  
     For the particle theory of light, this was a stopper. On the basis of the wave theory, however, there was no problem. At 



some points on the screen, light from both the first and second cone would consist of wave forms that were in phase (that 
is, crest matching crest, trough matching trough. The two light beams would reinforce each other at those points s~ that 
them would be a resultant waveform of twice the amplitude and, therefore, a region of doubled brightness. At other points 
on the screen, the two light beams would be out of phase (with crest matching trough and trough matching crest). The two 
beams would then cancel, at least in part, and the resultant waveform would have a much smaller amplitude than either 
component; where canceling was perfect, there would be no wave at all. A region of dimness would result.   
  
     In short, whereas one particle of the type Newton envisaged for light could not interfere with and cancel another 
particle, a wave form can and does easily interfere with and cancel another wave form, interference patterns can easily be 
demonstrated in water waves, and interference is responsible for the phenomenon of beats; for instance, in the case of 
sound waves. Young was able to show that the wave theory would account for just such an interference as was observed.  
  
     Furthermore, from the spacing of the interference bands of light and dark, Young could calculate the wavelength of 
light. If the ray of light from one cone is to reinforce the ray of tight from the second cone, both rays must be in phase, 
and that means the distances from the point of reinforcement on the screen to one slit and to the other must differ by an 
integral number of wavelengths. By choosing the interference bands requiring the smallest difference in distances, Young 
could calculate the length of a single wavelength and found it to be of die order of a fifty-thousandth of an inch, certainly 
small enough to account for the difficulty of observing diffraction effects. It was possible to show, furthermore, that the 
wavelengths of red light are about twice the wavelengths of violet light, which fit the requirements of wave theory if 
spectrum formation is to be explained.   
  
     In the metric system, it has proved convenient ~to measure the wavelengths of light in millimicrons where a milli-

micron is a billionth of a meter (10-9m) or a ten-millionth of a centimeter (10-7cm). Using this unit, the spectrum extends 
from 760 millimicrons for the red light of longest wavelength to 380 millimicrons for the violet light of shortest 
wavelength. The position of any spectral line can be located in terms of its wavelength.   
  
     One of those who made particularly good measurements of the wavelengths of spectral lines was the Swedish 
astronomer and physicist Anders Jones Angstrom (1814 - 1874) who did his work in the mid-nineteenth century. He 
made use of a unit that was one-tenth of a millimicron. This is called an angstrom unit (A) in his honor. Thus, the range 
of the spectrum is from 7600 A to 3800 A.   
  
     The wavelength ranges for the different colors may be given roughly (for the colors blend into one another and there 



are no ~ sharp divisions) as: fed, 7600-6300 A; orange, 6300-5900 A; yellow, 5900-5600 A; green, 5600-4900 A; blue, 
4900-4500 A; violet 4500-3800 A.   
  
     Incandescent sodium vapor gives off a bright line in the yellow, while sodium absorption produces a dark line in the 
same spot. This line, originally considered to be single and given the letter D by Fraunhofer has, by the use of better 
spectroscopes, been resolved into two very closely spaced lines, D1, and D2, The former is at wavelength 5896 A. the 
latter at 5890 A. Similarly, Fraunhofer's C line (in the red) and F line fin the blue) are both produced by hydrogen 
absorption and have wavelengths of 6563 A and 4861 A respectively. (Indeed, it was Angstrom who first showed from 
his study of spectral lines that hydrogen occurred in the sun.) In similar fashion, all the spectral lines produced by any 
element, through absorption or emission, can be located accurately.   
  
     The wave theory of light was not accepted at once despite the conclusiveness (in hindsight) of Young's experiment. 
However, all through the nineteenth century, additional evidence in favor of light waves turned up, and additional 
phenomena that, by particle theory, would have remained puzzling, found ready and elegant explanations through wave 
theory. Consider, for instance, the color of the sky.  
  
     Light, in meeting an obstacle in its otherwise unobstructed P8'h, undergoes a fate that depends on the size of the 
obstacle. If the obstacle is greater than 1000 millimicrons in diameter, light is absorbed and there is an end to a light ray, 
at least in the form of light. If the obstacle is smaller than 1 millimicrons in diameter, the light ray is likely to pass on 
undisturbed. If, however, the obstacle lies between 1 mt and 1000 mp in diameter, it will be set to vibrating as it absorbs 
the light and may then emit a light ray equal in frequency (and therefore in wavelength) to the original, but traveling in a 
different direction. This is light scattering.   
  
     The tiny water or ice particles in clouds are of a size to scatter light in this fashion; therefore a cloud-covered sky is 
uniformly white (or, if the clouds are thick enough to absorb a considerable fraction of the light altogether, uniformly 
gray).    
  
     The dust normally present in the atmosphere also scatters light. Shadows are therefore not absolutely black but, 
although darker by far than areas in direct sunlight, receive enough scattered light to make it possible to read newspapers 
in the shade of a building or even indoors on a cloudy day.   
  
     After the sun has set, it is shining past the bulge of the earth upon the upper atmosphere. The light scattered downward 



keeps the earth in a slowly dimming twilight. It is only after the sun has sunk 18 degrees below the horizon that full night 
can be said to have begun. In the morning, sunrise is preceded by a second twilight period, which is dawn.   
  
     As particles grow smaller, a pronounced difference becomes noticeable in the amount of scattering with wavelength. 
The light of short wavelength is scattered to a greater extent than the light of long wavelength. Thus, if sunlight shines 
down upon a cloud of tobacco smoke, it is the short-wave light that is more efficiently' scattered, and the tobacco smoke 
therefore seems bluish.   
  
     The British physicist John Tynndall (1820-1893) studied this phenomenon. He found that light passing through pure 
water or a solution of small-molecule substances such as salt or sugar, underwent no scattering. The light beam, traveling 
only forwards cannot be seen from the side and. the liquid is optically clear. If the solution contains particles large 
enough to scatter light, however (examples are the molecules of proteins or small conglomerates of ordinarily insoluble 
materials such as gold or iron oxide) some of the light is emitted sideways, and the beam can then be seen from the side. 
This is the Tyndall effect.   
  
     The English physicist John William Strutt, Lord Rayleigh (1841- 1919), went into the matter in greater detail in 1871. 
He worked out an equation that showed how the amount of light scattered by molecules of gas varied with a number of 
factors, including the wavelength of the light. He showed the amount of scattering was inversely proportionate to the 
fourth power of the wavelength, Since the red end of the spectrum had twice the wave length of the violet end, the red 
end was scattered less (and the violet end scattered more) by a factor of 2',or 16.   
  
     Over short distances, the scattering by particles as small as gas molecules of the atmosphere is insignificant. If, 
however, the miles of atmosphere stretching overhead are considered, scattering mounts up and, as Rayleigh showed, 
must be confined almost entirely to the violet end of the spectrum. Enough light is scattered to drown out the feeble light 
of the stars (which are, of course, present in the sky by day as well as by night). Furthermore, the scattered light that 
illuminates the sky, heavily represented in the short-wave region, is blue in color; the sun itself, with that small quantity 
of short-wave light subtracted from its color, is a trifle redder than it would be if the atmosphere were absent.   
  
     This effect is accentuated when the sun is on the horizon, for it then shines through a greater thickness of air as its 
light comes obliquely through the atmosphere. Enough light is scattered from even the mid-portions of the spectrum to 
lend the sky a faintly greenish hue, while the sun itself, with a considerable proportion of its light scattered, takes on a 
ruddy color indeed. This, reflected from broken clouds, can produce a most beautiful effect. Since the evening sky, after 



the day's activities, in dustier than is the morning sky, and since the dust contributes to scattering, sunsets tend to be more 
spectacular than sunrises. After gigantic volcano eruptions (notably that of Krakatoa, which blew up-literally--in 1883) 
uncounted tons of fine dust is hurled into the upper atmosphere, and sunsets remain particularly beautiful for months 
afterward.   
  
     On the moon (which lacks an atmosphere) the sky is black even when the sun is present in the sky. Shadows are pitch 
black on the moon, and the terminator (the line between the sunlit and shadowed portion of the body) is sharp, because 
there is neither dawn nor twilight. The earth, as seen from space, would also possess a terminator, but a fuzzy one that 
gradually shaded from light to dark. Furthermore, its globe would have a distinctly bluish appearance, thanks to light 
scattering by its atmosphere.  
  
The Velocity of light   
  
     In time, even the question of the velocity of light in various media was settled in favor of Huygens' view as one climax 
to two centuries of work on the problem. The first effort to measure the velocity of light was made by Galileo about a 
half-century before the wave-particle controversy began.   
  
     Galileo pieced himself on a hilltop and an assistant on another about a mile away. It was his intention to flash a lantern 
in the night and have his assistant flash a lantern in return as soon as he spied Galileo's light. The time lapse between 
Galileo's exposure of light and his sighting of the return signal would then, supposedly represent the time it took for light 
to travel from Galileo to the assistant and back. About that same period, this principle was also used successfully in 
determining the velocity of sound. 
  
     Galileo found a perceptible delay between the light emission and return; however, it was obvious to him that this was 
due not to the time taken by light to travel but to that taken by the human nervous system to react to a sensation, for the 
delay was no longer when the two men were a mile apart than when they were six feet apart.   
  
     Consequently, all Galileo could show by his experiment was that light traveled far more rapidly than sound. In fact, it 
remained possible that light traveled with infinite speed, as indeed many scholars had surmised.   
  
     It was not until the 1670's that definite evidence was presented to the effect that the velocity of light, while very great, 
was, nevertheless, finite. The Danish astronomer Olaus Roemer (1644-1710) was then making meticulous observations of 



Jupiter's satellites  (which had been discovered by Galileo in 1610). The orbits of those satellites had been carefully 
worked out, and the moments at which each satellite ought to pass behind Jupiter and be eclipsed to the sight of an 
observer on earth could, in theory, be calculated with precision. Roemer found, however, that the eclipses took place off 
schedule, several minutes too late at some times and several minutes too early at others.   
  
     On further investigation, he discovered that at the times that earth and Jupiter were on the same side of the sun, the 
eclipses were ahead of schedule; when the two planets were on the opposite sides of the sun, they were behind schedule.   
  
     Imagine a beam of light connecting a Jovian satellite with the earth--that is, a beam by means of which we see the 
satellite. At the moment of eclipse, the beam is cut off, and we no longer see the satellite. At least that would be the 
situation if light traveled with an infinite velocity. As soon as the beam was cut off, it would, under those conditions, 
cease to exist all along its path of travel, however long that path might be. It would not matter whether earth was on the 
same side of the sun as Jupiter was, or on the opposite side.   
  
     If, however, light traveled at a finite velocity, then once the beam was cut off by Jupiter, light would continue to travel 
onward toward earth; the earth observer would therefore continue to see the satellite until such time as the "broken end" 
of the beam of light reached him. Then, and only then, would the satellite disappear in eclipse. There would be a finite 
time between the actual eclipse and the eclipse as seen. The greater the distance between Jupiter and the earth, the greater 
this time lapse.   
  
     If the distance separating Jupiter and the earth were always the same, this time lapse would be constant and might, 
therefore, be ignored. But the distance between Jupiter and the earth is not constant. When' earth and Jupiter are on the 
same side of the sun, they am separated by as little as 400,000,000 miles. When they are on opposite sides, they can be 
separated by that distance plus the full width of the earth's orbit, or a total of about 580,000,000 miles. If at closest 
approach the eclipse is, say, eight minutes ahead of schedule, and at furthest distance, eight minutes behind schedule, then 
it would take light roughly 16 minutes to cross the diameter of the earth's orbit. Knowing the diameter of the earth's orbit, 
one could then easily calculate the velocity of light and, in 1676, Roemer did so. In the light of modern knowledge, the 
value he obtained was rather low. However, he succeeded in showing that light traveled at velocities of the order of a 
hundred fifty thousand miles a second.   
  
     Roemer's work was not accepted wholeheartedly, but in 1728 the English astronomer James Bradley (1693-1762) used 
the phenomenon of the aberration of light to perform a similar calculation. Suppose that the light of a star from near the 



North Celestial Pole is descending vertically upon the earth. The earth, however, is moving in its orbit at right angles to 
that direction and is therefore moving to meet the beam of light. A telescope must be angled slightly to catch that beam of 
light, just as an umbrella must be angled slightly to catch the raindrops if you are walking in a storm in which the rain is 
falling vertically.   
  
     The telescope must be angled in a continually changing direction as the earth moves about its curved orbit; therefore, 
the star seems to move in a very tiny ellipse in the sky. The size of the ellipse depends on the ratio of the velocity of the 
earth's motion to that of light's motion. (There would be no aberration if the earth were standing still or if light traveled at 
infinite velocity.) Since the earth's velocity around the sun is known to be 18.5 miles per second, the velocity of light 
could easily be calculated. Bradley showed that the velocity of light was nearly 190,000 miles a second.   
  
     It was not until 1849, however, that the question of the velocity of light was brought down from the heavens and 
measured upon the earth. The experimenter who did this was the French physicist Armand Hippolyte Louis Fizeau (1819-
1896), who returned to Galileo’s principle but tried to eliminate the matter of human reaction time.   
  
     He did this by allowing the light from one hilltop to be returned from another hilltop, not by a human being, but by a 
mirror. Furthermore, the light being emitted had to pass between the cogs of a turning wheel; consequently, the light was 
"chopped up" into a series of fragments-a dotted line of light, so to speak.   
  
     Consider the behavior of such an interrupted beam. Light travels so rapidly that if the wheel were turning at an 
ordinary rate of speed, each bit of light emerging between the cogs of the wheel would streak to the mirror, be reflected, 
and streak back before the wheel had time to move very far. The light would return through the same gap in the cogs by 
which it had left. A person viewing the returning light through an eyepiece would see a series of light pulses at such short 
intervals that he would seem to see one continuous blur of light. Furthermore, the light would be quite bright, because 
almost all the light that was emitted would be returned.   
  
     Of course, the last bit of one of the fragments of light, the bit that had just slipped between the cogs as one cog was 
about to cut off the beam, would find the cog completely in the way when it returned, and it would be absorbed. 
Consequently, the reflected light would lose just a tiny bit of its intensity and would not be quite as bright as it would be 
if there were no cogged wheel in the way at all.   
  
     If the cogged wheel were made to rotate faster and faster, a larger and larger fraction of the light would be intercepted 



by the cog on its return, and the reflected light, al seen through the eye-piece, would grow dimmer and dimmer. 
Eventually, this dimness would reach a minimum, because all the light that emerged while the gap was passing would 
return while the cog was passing. But if the wheel were rotated still faster, then some of the light would begin slipping 
through the next gap, and the light would begin to brighten again. At a certain point, all the light passing through one gap 
would return through the next, and there would be light at maximum brightness again.   
  
     By measuring the speed of rotation of the cogged wheel at the time of both minimum and maximum brightness, and 
knowing the distance from the light source to the mirror, one could calculate the speed of light. Fizeau's results were not 
as accurate as Bradley's, for instance, but Fizeau had brought the measurement to earth and had not involved any 
heavenly bodies.   
  
     Fizeau had a co-worker, the French physicist Jean Bernard Leon Foucault (1819-1868), who introduced an 
improvement that further eliminated human error. In Fizeau's device, it was still necessary to choose the points at which 
the brightness of the light seemed at a minimum or at a maximum. This required human judgment, which was unreliable. 
Foucault introduced a second mirror in place of the toothed wheel. The second mirror was set to turning. The turning 
mirror sent light to the fixed mirror only when it was turned in the proper direction. By the time the light had been 
reflected from the fixed mirror, the turning mirror had moved slightly. The returning light was reflected, therefore, not 
back to the fixed mirror again, but at a slight angle. With little trouble, this slight angle could be measured oh a scale. 
From that, from the rate at which the mirror turned and from the distance between the two mirrors, the velocity of light 
could be measured with considerable accuracy, and was.   
  
     What's more, Foucault was able to make the same measurement when light was made to travel through water rather 
than through air. This he did in 1850 and found that the velocity of light in water was distinctly less than that in air. This 
was precisely in accord with Huygens' prediction of nearly two centuries before and counter to Newton's prediction. To 
physicists, this seemed to be the last straw, and there was no important resistance to the wave theory of light after that.   
  
     The velocity of light passing through any transparent medium is equal to its velocity in a vacuum divided by the index 
of refraction (n) of the medium. The velocity of light in a vacuum is customarily represented as c, which stands for 
celeritas, a Latin word for "velocity." We might say then:  
  
V = c / n                                                                                   (Equation 5-1)   
  



     If we accept the approximate value of 186,000 miles per second for c, then since the index of refraction of water is 
1.33, the velocity of light in water is 186,000/1.33, or 140,000 miles per second. Similarly, the velocity of light in glass 
with an index of refraction of 1.5 is 124,000 miles per second, while through diamond, with its index of refraction of 
2.42, the velocity of light is 77,000 miles per second.   
  
     No substance with an index of refraction of less than 1 has been discovered, nor, on the basis of present knowledge, 
can any such substance exist. This is another way of saying that light travels more rapidly in a vacuum than in any 
material medium.   
  
     Since Foucault's time, many added refinements have been brought to the technique of measuring the velocity of light. 
In 1923, the American physicist Albert Abraham Michelson (1852- 1931) made use of a refined version of Foucault's 
setup and separated his mirrors by a distance of 22 miles, estimating that distance to an accuracy of within an inch. Still 
later, in 1931, he decided to remove the tri8ing interference of air (which has an index of refraction slightly greater than 1 
and which carries haze and dust besides) by evacuating a tube a mile long and arranging combinations of mirrors in such 
a way as to allow the light beam to move back and forth till it had traveled ten miles in a vacuum, all told.   
  
     Michelson's last measurement had pinned the velocity down to within ten miles per second of what must be the correct 
value, but that did not satisfy physicists. In 1905 (as we shall have occasion to see later in the volume, the velocity of 
light in a vacuum was revealed to be one of the fundamental constants of the universe, so there could be no resting while 
it remained possible to determine that velocity with a little more accuracy than had been possible hitherto. Consequently, 
new and more refined methods for measuring the velocity of light have been brought into use since World War II, and in 
1963, the National Bureau of Standards adopted the following value for c: 186,281.7 miles per second.   
  
     To be precisely accurate, they adopted the value in metric units, and here, by a curious coincidence, the velocity of 
light comes out to an almost even value: 299,792.8 kilometers per second.   
  
     As you see, this is just a trifle short of 300,000 kilometers per second, or 130,000,000,000 centimeters per second. 

This latter value can be given as 3 X 1010 cm/sec.   

  
     At this velocity, light can travel from the moon to the earth in 1.25 seconds, and from the sun to the earth in eight 
minutes. In one year, light travels 9,450.000,000,000 kilometers, or 5,900,000,000,000 miles, and this distance is called a 
light-year.   



  
     The light-year has become a convenient unit for use in astronomy since all objects outside our solar system are 
separated from us by distances so vast that no smaller unit will do. Our nearest neighbors among the stars, the members 
of the Alpha Ccntauri system, are 4.3 light years away, while the diameter of our Galaxy as a whole is some 100,000 
light-years.  
  
The Doppler-Fizeau Effect   
  
     With light viewed as a wave motion, it was reasonable to predict that it would exhibit properties analogous to those 
shown by other wave motions. The Austrian physicist Johann Christian Doppler (1803-1853) had pointed out that the 
pitch of sound waves varied with the motion of the source relative to the listener. If a sound-source were approaching the 
listener, the sound waves would be crowded together, and more waves would impinge upon the ear per second. This 
would be equivalent to a raised frequency, so the sound would be heard as being of higher pitch than it would have been 
heard if the source were fixed relative to the listener. By the same reasoning, a receding sound source emits a sound of 
lower pitch, and the train whistle, as the train passes, suddenly shifts from treble to base. 
  
     In 1842, Doppler pointed out that this Doppler effect ought to apply to light waves, too. In the case of an approaching 
light source, the waves ought to be crowded together and become of higher frequency, so the light would become bluer. 
In the case of a receding light source, light waves would be pulled apart and become lower in frequency, so the light 
would become redder.   
  
     Doppler felt that all stars radiated white light, with the light more or less, evenly distributed across the spectrum. 
Reddish stars, he felt, might be red because they were receding from us, while bluish stars were approaching us. This 
suggestion, however, was easily shown to be mistaken, for the fallacy lies in the assumption that the light we see is all the 
light there is. ...   
  
     So intimately is light bound up with vision that one naturally assumes that if one sees nothing, no light is present. 
However, light might be present in the form of wavelengths to which the retina of the eye is insensitive. Thus, in 1800, 
the British astronomer William Herschel (1738-1822) was checking the manner in which different portions of the 
spectrum affected the thermometer. To his surprise, he found that the temperature rise was highest at a point somewhat 
below the red end of the spectrum-a point where the eye could see nothing.   
  



     When the wave theory was established, the explanation proved simple. There were light waves with wavelengths 
longer than 2600 A. Such wavelengths do not affect the eye, and so they are not seen; nevertheless, they are real. Light of 
such long wavelengths can be absorbed and converted to heat; they can therefore be detected in that fashion. They could 
be put through the ordinary paces of reflection, refraction, and so on, provided that detection was carried through by 
appropriate heat-absorbing instruments and not by eye. These light waves, as received from the sun, could even be spread 
out into a spectrum with wave-lengths varying from 7600 A (the border of the visible region) up to some 30,000 A.   
  
     This portion of the light was referred to as "heat rays" on occasion, because they were detected as heat. A better name, 
however, and one universally used now, is infrared radiation ("below the red").   
  
     The other end of the visible spectrum is also not a true end. Light affects certain chemicals and, for instance, will bring 
about the breakdown of silver chloride, a white compound, and produce black specks of metallic silver. Silver chloride 
therefore quickly grays when exposed to sunlight (and it is this phenomenon that serves as the basis for photography). For 
reasons not understood in 1800, but which were eventually explained in 1900 (see page 132), the light toward the violet 
end of the spectrum is more efficient in bringing about silver chloride darkening than is light at the red end. In 1801, the 
German physicist Johann Wilhelm Ritter (1776-1810) found that silver chloride was darkened at a point beyond the violet 
end of the spectrum in a place where no light was visible. What's more, it was darkened more efficiently there than at any 
place in the visible spectrum. 
  
    Thus, there was seen to be a "chemical ray" region of the spectrum, one more properly called ultraviolet radiation 
("beyond the violet"), where the wavelength was smaller than 3600 A. Even the early studies carried the region down to 
2000 A, and in the twentieth century, far shorter wavelengths were encountered.   
  
     By mid-nineteenth century, then, it was perfectly well realized that the spectrum of the sun, and presumably of the 
other stars, extended from far in the ultraviolet to far in the infrared. A relatively small portion in the middle of the 
spectrum (in which. however, solar radiation happens to be at peak intensity), distinguished only by the fact that the 
wavelengths of this region stimulated the retina of the eye, was what all through history had been called "light." Now it 
had to be referred to as visible light. What, before 1800, would have been a tautology, had now become a useful phrase, 
for there was much invisible light on either side of the visible spectrum.   
  
     It can now be seen why Doppler's suggestion was erroneous. The amount of the Doppler shift in any waveform 
depends on the velocity of the waveform as compared with the velocity of relative motion between wave source and 



observer. Stars within our Galaxy move (relative to us) at velocities that are only in the tens of kilometers per second, 
while the velocity of light is 300,000 kilometers per second. Consequently, the Doppler effect on light would be small 
indeed. There would be only a tiny shift toward either the red or the blue-far from enough to account for the visible 
redness or blueness of the light of certain stars. (This difference in color arises from other causes.)   
  
     Furthermore, if there is a tiny shift toward the violet, some of the violet at the extreme end does, to be sure, disappear 
into the ultraviolet, but this is balanced by a shift of some of the infrared into the red. The net result is that the color of the 
star does not change overall. The reverse happens if then is a shift to the red, with infrared gaining and ultraviolet losing, 
but with the overall visible color unchanged.   
  
     Fizeau pointed this out in 1848 but added that if one fixed' one's attention on a particular wavelength, marked out by 
the presence of a spectral line, one might then detect its shift either toward the red or toward the violet. This turned out to 
be so, sad in consequence the Doppler effect with respect to light is sometimes called the Doppler-Fizeau effect.   
  
     Important astronomical discoveries were made by noting changes in the position of prominent spectral lines in the 
spectra of heavenly bodies, as compared with the position of those same spectral lines produced in the laboratory, where 
no relative motion is involved. It could be shown by spectral studies alone, for instance, that the sun rotated, for one side 
of the rotating sun is receding and the other advancing; the position of the spectral lines ia the light from one side or the 
other therefore reflected this, Again, light from Saturn's rings showed that the outer rim was moving so much more 
slowly than the inner rim that the rings could not be rotating as a single piece and must consist of separate fragments.   
  
     In 1868, the English astronomer William Huggins (1824- 1910) studied the lines in the spectrum of the star Sirius and 
was able to show that Sirius was receding from us at a speed of some 40 kilometers per second (a value reduced by later 
investigations). Since then, thousands of stars have had their radio velocities (velocities toward or away from us) 
measured, and most such velocities fall in the range of 10 to 40 kilometers per second. Thee velocities are toward us in 
some cases and away from us in others.   
  
     In the twentieth century, such measurements were made on the light from galaxies outside our own. Here it quickly 
turned out that there was a virtually universal recession. With the exception of one or two galaxies nearest us, there was 
an invariable shift in spectral lines toward the red--an effect which became famous as the red shift. Furthermore, the 
dimmer (and. therefore, presumably the farther) the galaxy, the greater the red shift. This correlation of distance with 
velocity of recession would be expected if the galaxies were, one and all, moving farther and farther from each other, as 



though the whole universe were expanding; this, indeed, is the hypothesis usually accepted to explain the red shift.    
  
     As the red shift increases with the distance of the galaxies, the velocity of recession, relative to ourselves increases, 
too. For the very distant galaxies, these velocities become considerable fractions of the velocity of light Velocities up to 
four-fifths the velocity of light have been measured among these receding galaxies. Under such circumstances, there is a 
massive shift of light into the infrared, a greater shift than can be replaced from the ultraviolet radiation present in the 
light of these galaxies. The total visible light of such distant galaxies dims for that reason and sets a limit io how much of 
the universe we might see by visible light no matter how great our telescopes  
  
Polarized light   
  
     To say that light consists of waves is not enough, for there are two important classes of waves with important 
differences in properties. Thus, water waves are transverse waves, undulating up and down at right angles to the direction 
in which the wave as a whole is traveling. Sound waves are longitudinal waves, undulating back and forth in the same 
direction in which the wave as a whole is traveling. Which variety represents light waves?   
  
     Until the second decade of the nineteenth century, the scientific minority who feel light to be a wave form believed it 
to' be a longitudinal wave form Huygens thought this, far instance However, there remained a seventeenth century 
experiment oil light that bad never been satisfactorily explained by either New- ton's particles of light or Huygens' 
longitudinal waves of light, and this eventually forced a change of mind.  
  
     The experiment was first reported in 1669 by a Dutch physician, Erasmus Bartholinus (1625-1698). He discovered 
that a crystal of Iceland spar (a transparent of calcium carbonate) produced a double image. If a crystal was placed on a 
surface bearing a black dot, for instance, two dots were seen through the crystal. If the crystal was rotated in contact with 
the surface, one of the dots remained motionless while the other rotated about it. Apparently, light passing through the 
crystal split up into two rays that were refracted by different amounts. This phenomenon was therefore called double 
refraction. The ray that produced the motionless dot, Bartholinus dubbed the ordinary ray: the other, the extraordinary 
ray.   
  
     Both Huygens and Newton considered this experiment but could come to no clear conclusion. Apparently, if light was 
to be refracted in two different ways, its constituents, whether particles or longitudinal waves, must differ among 
themselves. But how?   



  
     Newton made some vague speculations to the effect that Light particles might differ among themselves as the poles of 
a magnet did. He did not follow this up, but the thought was not forgotten.   
  
     In 1808, a French army engineer, Etienne Louis Malus (1775-1812), was experimenting with some doubly refracting 
crystals. He pointed one of them at sunlight reflected from a window some distance outside his room and found that 
instead of seeing the shining spot of reflected sunlight double (as he expected) he saw it single. He decided that in 
reflecting light the window reflected only one of the "poles" of light of which Newton had spoken. The reflected light he 
therefore called polarized light. It was a poor name that did not represent the actual facts, but it has been kept and will 
undoubtedly continue to be kept.   
  
     When the wave theory of light sprang back into prominence with Young's experiment, it soon enough became clear 
that it light were only considered transverse waves, rather than longitudinal waves, polarized light could easily be 
explained. By 1817, Young had come to that conclusion, and it was further taken up by a French physicist, Augustine 
Jean Fresnel (1788 -1827). In 1814, Fresnel had independently discovered interference patterns, and -he went on to deal 
with transverse waves in a detailed mathematical analysis.   
  
     To see how transverse waves will explain polarization, imagine a ray of light moving away from you with the light 
waves undulating in planes at right angles to that line of motion, as is required of transverse waves. Say the light waves 
are moving up and down. They might also, however, move right and left and still be at right angles to the line of motion. 
They might even be moving diagonally at any angle and still be at right angles to the line of motion. When the component 
waves of light are undulating in all possible directions at right angles to the line of motion, and are evenly distributed 
through those planes, we have unpolarized light.   
  
     Let's concentrate on two forms of undulation, up-down and left-right. All undulations taking up diagonal positions can 
be divided into an up-down component and a left-right component (just as forces can be divided into components at right 
angles to each other). Therefore, for simplicity's sake we can consider unpolarized light as consisting of an up-down 
component and a left-right component only, the two present in equal intensities.   
  
     It is possible that the up-down component may be able to slip through a transparent medium where the left-right 
component might not. Thus, to use an analogy, suppose you held a rope that passed through a gap in a picket fence. If you 
made up-down waves in the rope, they would pass through the gap unhindered. If you made left-right waves, those waves 



would collide with the pickets on either side of the gap and be damped out.   
  
     The manner in which light passes through a transparent substance, then, depends on the manner in which the atoms 
making up the substance are arranged--how the gaps between the atomic pickets are oriented, in other words. In most 
cases, the arrangement is such that light waves in any orientation can pass through with equal ease. Light enters 
unpolarized and emerges unpolarized. In the case of Iceland spar, this is not so; only up-down light waves and left-right 
light waves can pass through, and one of these passes with greater difficulty, is slowed up further, and there- fore is 
refracted more. The result is that at the other end of the crystals two rays emerge-one made up of up-down undulations 
only and one made up of left-right undulations only. Each of these is a ray of polarized light. Because the undulations of 
the light waves in each of these rays exist in one plane only, such light may more specifically be called plane-polarized 
light.   
  
     In 1828, the British physicist William Nicol (1768? -1851) produced a device that took advantage of the different 
directions in which these plane-polarized light rays traveled inside the crystal of Iceland spar. He began with a 
rhombohedral crystal of the substance (one with every face a parallelogram) and cut it diagonally. The two halves were 
cemented together again by way of a layer of Canada balsam (a resin from a tree called the balsam fir). Light entering the 
crystal would be split up into two plane- polarized rays traveling in slightly different directions. One ray would strike the 
Canada balsam at an angle such that total reflection would take place. The reflected ray would then strike a painted 
section of the prism and be absorbed. The other ray, striking the Canada balsam at a slightly different angle, would be 
transmitted, pass into the other half of the crystal and out into the open air again.   
  
     The light emerging from such a Nicol prism, then, would consist of a single plane-polarized ray, representing about 
half the original light intensity.   
  
     Suppose the light passing through a Nicol prism is made to pass through a second Nicol prism. If the second prism is 
aligned in the same fashion as the first, the light will pass through the second unhindered. (That is like a rope with up-
down waves passing through two picket fences, one behind the other. Neither fence gets in the way.)   
  
     But suppose the second Nicol prism is rotated through a small angle. The polarized light emerging from the first prism 
cannot get through the second prism in full intensity. Then is some loss (as there would be in the up-down waves of the 
rope if the slats of wood in the second picket fence were tipped a little into the diagonal).   
  



     The amount of light that would get through the second prism would decrease as the angle through which that prism 
was rotated increased. Once the second prism was rotated through 90", no light at all could get through.   
  
     The second prism can thus be used to determine the exact plane in which the light issuing from the first prism is 
polarized. By twisting the second prism and noticing the alignment at which the light one sees through it is at maximum 
brightness, one finds the plane of polarization. If one sees no light at all, the alignment of the Second prism is at right 
angles to the plane of polarization. Since it is difficult to judge exactly where maximum or minimum brightness is, the 
second prism may be manufactured in such a way as to consist of two prisms set at a slight angle to each other. If one is 
aligned properly, the other is slightly off. Looking through an eyepiece, then, one would see one half distinctly brighter 
than the other. By adjusting the alignment so that both halves an equally bright, one locates the plane of polarization. The 
first prism in such an instrument, the one that produces the polarized light, is the polarizer. The second, which determines 
the plane of polarization, is the analyzer. The instrument as a whole is a polariscope.   
  
     Even before the Nicol prism was invented, it was discovered by the French physicist Jean Baptiste Biot (1774-1862), 
in 1815, that polarized light, traveling through solutions of certain substances, or through certain transparent crystals, 
would have its plane of polarization shifted.   
  
     Suppose, for instance, that between the two prisms of a polariscope is a cylindrical vessel containing air and that the 
prisms are aligned in the same direction. If water is poured into the tube, nothing happens; the two halves of the field as 
seen in the eyepiece remain equally bright. The plane of polarization of the light has not been altered by passing through 
water. If instead of pure water a sugar solution had been placed in the tube, the two halves seen in the eyepiece would 
become unequally bright. The analyzer would have to be turned through some definite angle to make them equally bright 
again. That angle would represent the amount by which the plane of polarized light had been rotated by the sugar 
solution.   
  
     The size of this angle depends on various factors: the concentration of the solution and the nature of the substance 
dissolved; the distance through which light travels within the solution; the wavelength of the light; and the temperature of 
the solution. If one standardizes these factors, and either observes or calculates what the angle of rotation would be for 
light of a wavelength equal to that produced by a sodium vapor lamp, traveling through one decimeter of a solution 

containing l gram per cubic centimeter at a temperature of 200C, then one obtains the specific rotation.   

  

     The value of the specific rotation is characteristic for every transparent system. For many this value is 00--that is, the 



plane of polarized light is not rotated at all. Such systems are optically inactive. Systems that do rotate the plane of 
polarized light are optically active.   
  
     Some optically active systems rotate the plane of polarized light in a clockwise direction. This is taken as a right-
handed turn, and such systems are dextro-rotatory. Others turn the light in a counterclockwise direction and are levo-
rotatory.   
  
     In 1848, the French chemist Louis Pasteur (1822-1895) was able to show that the optical activity of transparent 
crystals was dependent on the fact that such crystals were asymmetric. Further, if such asymmetric crystals could be 
fashioned into two mirror-image forms, one would be dextro-rotatory, and the other, levo-rotatory. The fact that certain 
solutions also exhibited optical activity argued that asymmetry must be present in the very molecules of these substances. 
In 1874, the Dutch physical chemist Jacobus Hendricus van't Hoff (1852-1911) presented a theory of molecular structure 
that accounted for such asymmetry in optically active substances. A discussion of this, however, belongs more properly 
in a book on chemistry and I will go no further into the subject here.   
  
     Nicol prisms are not the only means by which beams of plane-polarized light can be formed. There are some types of 
crystal that do not merely split the light into two plane-polarized beams but absorb one and transmit the other. Crystals of 
iodo-quinine sulfate will do this. Unfortunately, it is impossible to manufacture large useful crystals of this material since 
such crystals are fragile and disintegrate at the least disturbance.   
  
     In the mid-1930's, however, it occurred to a Harvard undergraduate, Edwin Herbert Land (1909-     ) that single large 
crystals were not necessary. Tiny crystals, all oriented in the same direction, would serve the purpose. To keep them so 
oriented, and to keep them from further disintegration, they could be embedded in a sheet of transparent, flexible plastic. 
Land quit school in 1936 to go into business and produced what is now known as Polaroid. It can serve all the functions 
of Nicol prisms more economically and conveniently (though not with quite the same precision).   
  
     As Malus had discovered, beams of polarized light can also be produced by reflection, at some appropriate angle, from 
material such as glass; the exact size of the angle depends on the index of refraction of the material. "Sunglasses" made of 
Polaroid can block most of this reflected polarized light and cut down glare.   
  
     Thus, the nineteenth century saw light established not merely as a wave form but as a transverse wave term; if this 
solved many problems, it also raised a few. 



  
  
  

  

  

  

  

Chapter 6 
The Ether 

  
Absolute Motion   
  
     If light is a waveform, then it seemed to most scientists, up to the beginning of the twentieth century, that something 
must be waving. In the case of water waves, for instance, water molecules move up and down; in the case of sound 
waves, the atoms or molecules of the transmitting medium move to and fro. Some thing, it seemed, would therefore have 
to be present in a vacuum; something that would move either up and down, or to and fro, in order to produce light waves.  
  
     This something, whatever it was, did not interfere with the motions of the heavenly bodies in any detectable way, so it 
seemed reasonable to suppose it to be nothing more than an extremely rarefied gas. This extremely rarefied gas (or 
whatever it was that filled the vacuum of space) was called ether, from a word first used by Aristotle to describe the 
substance making up the heavens and the heavenly bodies. Ether might also be the substance through which the force of 
gravitation was transmitted, and this might be identical with the ether that did or didn't transmit light. In order to specify 
the particular ether that transmitted light (in case more than one variety existed) the phrase luminiferous ether ("light-
carrying ether") grew popular in the nineteenth century.   
  
     In connection with the ether, the difference in properties between transverse and longitudinal waves becomes 
important. Longitudinal waves can be conducted by material in any state: solid, liquid or gaseous. Transverse waves, 
however, can only be conducted through solids, or, in a gravitational field, along liquid surfaces. Transverse waves 
cannot be conducted through the body of a liquid or gas. It was for this reason that early proponents of the wave theory of 
light, assuming the ether to be a gas, also assumed light to consist of longitudinal waves that could pass through a gas 



rather than transverse waves that could not.   
  
     When the question of polarization, however, seemed to establish the fact that light consisted of transverse waves, the 
concept of the ether had to be drastically revised. The ether had to be a solid to carry transverse light waves; it had to be a 
substance in which all parts were fixed firmly in place.   
  
     If that were so, then if a portion of the ether were distorted at-right angles to the motion of a light beam (as seemed to 
be required if light were a transverse wave phenomena), the forces tending to hold that portion in place would snap it 
back. That portion would overshoot the mark, snap back from the other direction, overshoot the mark again, and so on. 
(This is what happens in the case of water waves, where gravity supplies the force necessary for snapback, and in sound 
waves, where intermolecular forces do the job.)   
  
     The up and down movement of the ether thus forms the light wave. Moreover, the rate at which a transverse wave 
travels through a medium depends on the size of the force that snaps back the distorted region. The greater the force, the 
faster the snap back, the more rapid the progression of the wave. With light traveling at over 186,000 miles per second, 
the snap-back must be rapid indeed, and the force holding each portion of the ether in place was calculated to be 
considerably stronger than steel.   
  
     The luminiferous ether, therefore, must at one and the same time be an extremely tenuous gas, and possess rigidity 
greater, than that of steel. Such a combination of properties is hard to visualize, but during the mid-nineteenth century, 
physicists worked hard to work out the consequences of such a rigid-gas and to establish its existence. They did this for 
two reasons. First, there seemed no alternative, if light consisted of transverse waves. Secondly, the ether was needed as a 
reference point against which to measure motion. This second reason is extremely important, for without such a reference 
point, the very idea of motion becomes vague, and all of the nineteenth century development of physics becomes shaky.   
  
     To explain why that should be, let us suppose that you are on a train capable of moving at a uniform velocity along a 
perfectly straight set of rails with vibration less motion. Ordinarily, you could tell whether your train were actually in 
motion by the presence of vibrations, or by inertial effects when the train speeds up, slows down, or rounds a curve. 
However, with the train moving uniformly and vibrationlessly, all this is eliminated and the ordinary methods for noting 
that you are in motion are useless.   
  
     Now imagine that then is one window in the train through which you can see another train on the next track. There is a 



window in that other train, and someone is looking out at you through it. Speaking to you by sign language, he asks, "Is 
my train moving?" You look at it, see clearly that it is motionless, and answer, "No, it is standing still." So he gets out 
and is killed at once, for it turns out that both trains are moving in the same direction at 70 miles per hour with respect to 
the earth's surface.   
  
     Since both trains were moving- in the same direction at the same speed, they did not change position, with respect to 
each other, and each seemed motionless to an observer on the other. If there had been a window on the other side of each 
train, one could have looked out at the scenery and noted it moving rapidly toward the rear of the train. Since we 
automatically assume that the scenery does not move the obvious conclusion would be that the train is actually in motion 
even though it does not seem to be.   
  
     Again, suppose that in observing the other train, you noted that it was moving backward at two miles an hour. You 
signal this information to the man in the other train. He signals backs violent negative. He is standing still, he insists, but 
you are moving forward at two miles an hour. Which one of you is correct?   
  
     To decide that, check on the scenery. It may then turn out that Train A is motionless while Train B is actually moving 
backward at two miles an hour. Or Train B may be motionless while Train A is moving forward at two miles an hour. Or 
Train A may be moving forward at one mile an hour while Train B is moving backward at one mile an hour. Or both 
trains may be moving forward: Train A at 70 miles an hour and Train B at 68 miles an hour. There are an infinite number 
of possible motions, with respect to the earth's surface, that can give rise to the observed motion of Train A and Train B 
relative to each other.   
  
     Through long custom, people on trains tend to downgrade the importance of the relative motion of one train to 
another. They consider it is the motion with respect to the earth's surface that is the "real" motion.   
  
     Bui is it? Suppose a person on a train, speeding smoothly along a straight section of track at 70 miles an hour, drops a 
coin. He sees the coin fall in a straight line to the floor of the train. A person standing by the wayside, watching the train 
pass and able to watch the coin as it falls, would see that it was subjected to two kinds of motion. It falls downward at an 
accelerating velocity because of gravitational force and it shares in the forward motion of the train, too. The net effect of 
the two motions is to cause the coin to move in a parabola.   
  
     We conclude that the coin moves in a straight line relative to the train and in a parabola relative to the earth's surface. 



Now which is the "real" motion? The parabola? The person on the train who is dropping the coin may be ready to believe 
that al- though he seems to himself to be standing still, he is "really" moving at a velocity of 70 miles an hour. He may 
not be equally ready to believe that a coin that he sees moving in a straight line is "really" moving in a parabola.   
  
     This is a very important point in the philosophy of science. Newton's first law of motion states that an object not 
subjected to external forces will move in a straight line at constant speed. However, what seems a straight line to one 
observer does not necessarily seem a straight line to another observer. In that case, what meaning does Newton's first law 
have? What is straight-line motion, anyway?   
  
     Throughout ancient and medieval times, almost all scholars believed that the earth was affixed to the center of the 
universe and never budged from that point. The earth, then, was truly motionless. It was (so it was believed) in a state of 
obsolete rest. All motion could be measured relative to such a point at absolute rest, and then we would have absolute 
motion. This absolute motion would be the "true" motion upon which all observers could agree. Any observed motion 
that was not equivalent to the absolute motion was the result of the absolute motion of the observer.   
  
     There was some question, of course, as to whether the earth were truly motionless, even in ancient times. The stars 
seemed to be moving around the earth in 24 hours at a constant speed. Was the earth standing still and the celestial sphere 
turning, or was the celestial sphere standing still and the earth turning? The problem was like that of the two trains 
moving relative to each other with the "real motion" unverifiable until one turned to look at the scenery. In the case of the 
earth and the celestial sphere, there was no scenery to turn to and no quick decision, therefore, upon which everyone 
could agree.   
  
     Most people decided it was the celestial sphere that turned, because it was easier to believe that than to believe that the 
vast earth was turning without our being able to feel that we were moving. (We still speak of the sun, moon, planets and 
stars as "rising" and "setting.") In modern times, however, for a variety of reasons better discussed in a book on 
astronomy, it has become far more convenient to suppose that the earth is rotating rather than standing still.   
  
     In such a case, while the earth as a whole is not at absolute rest, the axis may be. However, by the beginning of 
modern times, more and more astronomers were coming to believe that even the earth's axis was not motionless. The 
earth, all of it, circled madly about the sun along with the other planets. No part of it was any more at rest than was any 
train careening along its surface. The train might have a fixed motion relative to the earth's surface, but that was not the 
train's "true" motion.   



  
     For a couple of centuries after the motion of the earth had come to be accepted, there was still some excuse to believe 
that the sun might be the center of the universe. The sun visibly rotated, for sunspots on its surface circled its globe in a 
steady period of about 27 days. However, the sun's axis might still represent that sought-for state of absolute rest.   
  
     Unfortunately, it became clearer and clearer, as the nineteenth century approached, that the sun was but a star among 
stars, and that it was moving among the stars. In fact, we now know that just as the earth moves around the sun in a 
period of one year, the sun moves about the center of our Galaxy in a period of 200,000,000 years. And. of course, the 
Galaxy itself is but a galaxy among galaxies and must be moving relative to the others.   
  
     By mid-nineteenth century, there was strong reason to sup pose that no material object anywhere in the universe 
represented a state of absolute rest, and that absolute motion could not therefore be measured relative to any material 
object. This might have raised a serious heart chilling doubt as to the universal validity of Newton's laws of motion, on 
which all of nineteenth century physics was based. However, a material object was not needed to establish absolute 
motion.   
  
     It seemed to nineteenth century physicists that if space were filled with ether, it was fair to suppose that this ether 
served only to transmit forces such as gravity and waves such as those of light and was not itself affected, overall, by 
forces. In that case, I could not be set into motion. It might vibrate back and forth, as in transmitting light waves, but it 
would not have an overall motion. The ether, then, might be considered as being at absolute rest. All motion became 
absolute motion if measured relative to the ether. This ether-filled space, identical to all observers, aloof, unchanging, 
unmoving, crossed by bodies and forces without being affected by them, a passive container for matter and energy, is 
absolute space.   
  
     In Newton's time and for two centuries afterward, there was no way of actually measuring the motion of any material 
body relative to the ether. Nevertheless, that didn't matter. In principle, absolute motion was taken to exist, whether it was 
practical to measure it or not, and the laws of motion were assumed to hold for such absolute motion and therefore, must 
surely hold for other relative motions (which were merely one absolute motion added to another absolute motion).  
  
  
The Michelson-Morley Experiment   
  



     In the 1880's, however, it appeared to Michelson (the latter-day measurer of the velocity of light) that a method of 
determining absolute motion could be worked out.   
  
     Light consists of waves of ether, according to the view of the time, and if the ether moved, it should carry its own 
vibrations (light) with it. If the ether were moving away from us, it should carry light away from us and therefore delay 
light in its motion toward us--reduce the velocity of light, in other words. If the ether were moving away from us at half 
the velocity of light, then light would lose half its velocity relative to ourselves and therefore take twice as long to get to 
us from some fixed point. Similarly, if the ether were moving toward us, light would reach us more quickly than 
otherwise.   
  
     To be sure, physicists were assuming that the ether itself was not moving under any circumstances. However, the earth 
must, it seemed, inevitably be moving relative to the ether. In that case, if the earth is taken as motionless, then the ether 
would seem to be moving relative to us, fixed as we are to the earth. There would seem to be what came to be called an 
"ether wind."   
  
     If there were no ether wind at all, if the earth were at absolute rest, then light would travel at the same velocity in all 
directions. To be sure, it actually seems to do just this, but surely that is only because the ether wind is moving at a very 
small velocity compared to the velocity of light; therefore, light undergoes only minute percentage changes in its velocity 
with shift in direction. In view of the difficulty of measuring light's velocity with any accuracy in the first place, it would 
not be surprising that small differences in velocity with shifting direction would go unnoticed.   
  
     Michelson, however, in 1881, invented a device that was perhaps delicate enough to do the job.   
  

     In this device, light of a particular wavelength falls upon a glass plate at an angle of 450. The rear surface of the glass 
plate is "half-silvered." That is, the surface has been coated with enough silver to reflect half the light and allow the 
remaining half to be transmitted. The transmitted light emerges, traveling in the same direction it had been traveling in 
originally, while the reflected light moves off at right angles to that direction. Both light beams are reflected by a mirror 
and travel back to the half- silvered, glass plate. Some of the originally reflected beam now passes through, while some of 
the originally transmitted beam is now reflected. In this way, the two beams join again.   
  
     In effect a single beam of light has been split in two; the two halves have been sent in directions at right angles to each 
other, have returned, and have been made to join in a combined beam again.   



  
     The two beams, joining, set up interference fringes, as did the two beams in Young's experiment. One of the mirrors 
can be adjusted so that the length of the journey of the beam of light to that particular mirror and back can be varied. As 
the mirror is adjusted, the interference fringes move. From the number of fringes that pass the line of sight when the 
mirror is moved a certain distance, the wavelength of the light can be determined. The greater the number of fringes 
passing the line of sight, the shorter the wavelength.   
  
     Michelson determined wavelengths of light with his instrument, which he called the interferometer ("to measure by 
interference"), so precisely that he suggested the wavelength of some particular spectral line be established as the 
fundamental unit of length. At the time, this fundamental unit had just been established as the international Prototype 
Meter. This was the distance between two fine marks on a bar of platinum-iridium alloy kept at Sevres, a suburb of Paris.  
  
     In 1960, Michelson's suggestion was finally accepted and the fundamental unit of length became a natural 
phenomenon rather than a man-made object. The orange-red spectral line of a variety of the rare gas krypton was taken as 
the standard. The n is now set officially equal to 1, 650,763,73  wavelengths of light.   
  
     But Michelson was after bigger game than the determination of the wavelengths of spectral lines. He considered the 
fact the beam of light in the interferometer was split into two halves that traveled at right angles to each other. Suppose 
one of these two light rays happened to be going with the ether wind. Its velocity would be c (the velocity of light with 
respect to ether) plus v (the velocity of the light source with respect to ether). If the distance of the reflecting mirror from 
the half-silvered prism is taken as d, then the time it would take the light to pass from the half-silvered prism to the 
reflecting mirror would be d/(c+ V). After reflection, the light would move over the distance d in precisely the opposite 
direction. Now it would be moving into the ether wind, and it would be slowed down, its overall velocity being  
(c – v). The time taken for its return would be d/(c - v). The total time t (1) taken by that beam of light to go and return is 
therefore:  
  

t(1) = d/(c + v)   +  d / (c – v) = 2dc / (c2  - v2 )            (Equation 6-1)   

  
     Meanwhile, however, the second half of the beam is going at right angles to the first; it also returns at right angles to 
the first. It is going neither with the ether wind nor against it. It is going "crosswind" both ways.   
  
     The time taken by the light beam to go and return crosswind t(2) can be calculated with the help of plane geometry 



and turns out to be: 
  

t(2) = 2d / [ square root (c2  - v2 )]                               (Equation 6-2)   

  
     If we divide Equation 6-1 by Equation 6-2, we will determine the ratio of the time taken to cover the ground with-and- 
against the ether wind and the time taken to cover the same distance crosswind. We would have:  
  

t(1) / t(2)  = 2dc / (c2  - v2 ) (divided by) 2d / [ square root (c2  - v2 )]  = c square root (c2  - v2 )]  / (c2  - v2 ) 

                                                                                                                 (Equation 6-3)    
    The expression at the extreme right of Equation 6-3 is of the form, [{a} square root) (x) /x], and if both numerator and 
denominator of such an expression is divided by square root (x) the equivalent expression a / square root (x) is obtained. 
Equation 6-3 can therefore be simplified to:  
  

t(1) / t(2)  = c / square root (c2  - v2 )                                                         (Equation 6-4)   

  

     Further simplification can be obtained if both numerator and denominator are multiplied by square root of (1/ c2) (The 
multiplication of the numerator and denominator of a fraction by the same quantity does not of course alter the value of 
the expression as a whole.)  
  

      The numerator of Equation 6-4 then become c square root of (1/ c2) or c/c or 1. The denominator becomes [square 

root (c2  - v2)] x [square root of (1/ c2)] or square root of [1 -  v2 / c2] 

  
Equation 6-4 can therefore be expressed as:  
  

t(1) / t(2)  = 1 / [square root of (1 -  v2 / c2 )]                                    (Equation 6-5)   

  
     If the light source is at rest with respect to the ether, v = 0 and t(1) / t(2)  = 1. In that case the time taken by the beam 
of light going with-and-against the ether wind is the same as the time taken by the beam of light to go crosswind. (Indeed, 
the time is the same for light beams going in any direction.) If the movable mirror is adjusted so that the two beams of 
light travel exactly the same distance, they will return exactly in step and there will be no interference fringes. 
Furthermore there will be no interference fringes if the instrument is then turned so as to have the light beams travel in 



changed directions.   
  
     However, if the light source is moving with respect to the ether, then v is greater than 0,  

 (1 -  v2 / c2 ) is less than t(1) / t(2)  is greater than  1. The light traveling with-and-against the ether would then take 
longer to cover a fixed distance than the light traveling crosswind would. To be sure, the ratio is not very much greater 
than 1 for any reasonable velocity relative to the ether. Even if the light source were moving at one-tenth the velocity of 
light (so that v was equal to the tremendous figure of 30,000 kilometers per second), the ratio would be only 1.005. At 
ordinary velocities, the ratio would be very small indeed.   
  
     Nevertheless, the difference in time would be enough to throw the wavelengths of the two beams of light out of step 
and set up interference fringes. Naturally, you could not know in advance which direction would be with-and-against the 
ether wind and which would be crosswind, but that would not matter. The instrument could be pointed in some direction 
at random, and the movable mirror could be adjusted so as to remove the interference fringes. If the instrument were 
turned now, the light beams would change direction and be affected differently by the ether wind so that interference 
fringes would appear. 
  
    From the spacing of the fringes one could determine the velocity of the light source relative to the ether. Since the light 
source was firmly attached to the earth, this was equivalent to finding the velocity of the earth relative to the ether-that is, 
the absolute motion of the earth. Once that was done, all bodies, as long as their motions relative to the earth were known, 
would have absolute motions that were known.   
  
     Michelson obtained the help of an American chemist, Edward Williams Morley (1838-1923), and in 1886 he tried this 
experiment. Michelson had tried it alone, before, but never under conditions that he found satisfactory. Now he and 
Morley dug down to bedrock to anchor the interferometer, and balanced the instrument with fantastic precautions against 
error.   
  
     Over and over again, they repeated the experiment and always the results were the same-negative! Once they adjusted 
the device to remove interference fringes, those fringes did not show up to any significant extent when the interferometer 
was reoriented. One might have thought that they just happened to be unlucky enough to try the experiment at a time 
when the earth happened to be motionless with respect to the ether. However, the earth travels in an ellipse about the sun 
and changes the direction of its motion every moment. If it were at rest with respect to the ether on one day, it could not 
be at rest the next.   



  
     Michelson and Morley made thousands of observations over many months, and in July 1887, finally announced their 
conclusion. There was no ether wind! 
  
     I have gone into detail concerning this experiment because of the shocking nature of the result. To say there was no 
ether wind meant there was very likely no way of determining absolute motion. In fact, the very concept of absolute 
motion suddenly seemed to have no meaning. And if that were so, what would become of Newton's laws of motion and 
of the whole picture of the universe as based upon those laws?   
  
     Physicists would have been relieved to find that the Michelson-Morley experiment was wrong and that there was an 
ether wind after all. However, the experiment has been repeated over and over again since 1887. In 1960, devices far 
more accurate than even the interferometer were used for the purpose, and the result was always the same. There is no 
ether wind. This fact simply had to be accepted, and the view of the universe changed accordingly.  
  
The Fitzgerald Contraction   
  
     Naturally, attempts were made to explain the results of the Michelson-Morley experiment in terms of the ether. The 
most successful attempt was that of the Irish physicist George Francis Fitzgerald (1851-1901), who in 1893 proposed that 
all objects grew shorter in the direction of their absolute motion, being shortened, so to speak, by the pressure of the ether 
wind. Distances between two bodies moving in unison would likewise shorten in the direction of the motion, since the 
two bodies would be pushed together by the ether wind. The amount of this "fore-shortening" would increase with the 
velocity of the absolute motion, of course, as the pressure of the ether wind rose.   
  
     Fitzgerald suggested that at any given velocity, the length (L) of an object or of the distance between objects would 
have a fixed ratio to the length (L

0
) of that same object or distance at rest; and L

0
, may be termed the rest-length. This 

ratio would be expressed by the quantity [square root of (1 -  v2 / c2 )] where c is the velocity of light in a vacuum, and v 
is the velocity of the body, both relative to the ether. In other words: 

 L = L
0 

[square root of (1 -  v2 / c2 )]                                                        (Equation 6-6)   

  
     The Fitzgerald ratio is equal to the denominator of the expression in Equation 6-5, which represents the ratio of the 
distances traveled by the two beams of light in the interferometer. Multiplied by Fitzgerald’s ratio the value in Equation 



6-5 becomes 1. The distance covered by the beam of light moving with-and-against the ether wind is now decreased by 
foreshortening to just exactly the extent that would allow the beam to cover the distance in the same time as was required 
by the beam traveling crosswind. In other words, the existence of the ether wind would make one of the beams take a 
longer time, but the existence of the Fitzgerald contraction produced by the same ether wind allows the beam to complete 
its journey in the same time as one would expect if there were no ether wind.   
  
     The two effects of the ether wind cancel perfectly, and this has reminded a thousand physicists of a passage from a 
poem in Lewis Carroll’s Through the Looking-Glass.  
  

"But I was thinking of a plan 
To dye one's whisker's green, 
And always use so large a fan 
That they could not be seen." 

  
     Carroll's book was written in 1872, so it could not have deliberately referred to the Fitzgerald contraction, but the 
reference is a perfect one, just the same. The contraction is extremely small at ordinary velocities. The earth moves in its 
orbit about the sun at 30 kilometers per second relative to the sun), which by earthly standards is a great velocity. If v is 

set equal to 30 and this is inserted into the Fitzgerald ratio, we have [square root of {1 - (30)2/(300,000) 2}]which is equal 
to 0.999995. The foreshortened diameter of the earth in the direction of its motion would then be 0.999995 of its diameter 
perpendicular to that direction (assuming the earth to be a perfect sphere). The amount of the foreshortening would be 
62.5 meters.   
  
     If the earth's diameter could be measured in all directions, and the direction in which the diameters were abnormally 
short could be located, then the direction of the earth's motion relative to the ether could be determined. Furthermore, 
from the size of the abnormal decrease in diameter, the absolute velocity of the earth relative to the ether could be worked 
out.   
  
     But there is a difficulty. This difficulty lies not in the smallness of the foreshortening, because no matter how small it 
is all might be well if it could be detected in principle. It cannot be detected, however, as long as we remain on earth. 
While on earth, all the instruments we could conceivably use to measure the earth's diameter would share in the earth's 
motion and in it’s foreshortening. The foreshortened diameter would be measured with force-shortened instruments, and 
no foreshortening would be detected.   



  
     We could do better if we could get off the earth and, without sharing in the earth's motion, measure its diameter in all 
directions (very accurately) as it speeds past. This is not exactly practical but it is something that is conceivable in 
principle.   
  
     To make such a thing practical, we must find something that moves very rapidly and in whose motion we do not 
ourselves share. Such objects would seem to be the speeding subatomic particles that have motions relative to the surface 
of the earth of anywhere from 10,000 kilometers per second to nearly the speed of light.   
  
     The Fitzgerald contraction becomes very significant at such super-velocities. The velocity might be high enough, for 
instance, for the length of the moving body to be foreshortened to only half its rest-length.  In that case [square root (1 – 

v2 /c2)] = 1/2, and it we solve for v, we find that it equals [square root of  [3c2 /4]. Since c = 300,000 kilometers per 

second, [square root 3c2 /4] = 260,000 kilometers per second. At this ferocious velocity, seven-eighths that of light, an 
object is foreshortened to half its rest-length, and some subatomic particles move more rapidly (relative to the earth's 
surface) than this.  
  
     At still more rapid velocities, foreshortening becomes even more marked. Suppose the velocity of a body becomes 
equal to the velocity of light. Under those conditions v is equal to c, and Fitzgerald’s ratio becomes [square root (1 – 

c2 /c2)] which equals 0. This means that by Equation 6-6 the length of the moving body (L) is equal to its rest-length L(0) 
multiplied by zero. In other words, at the velocity of light, all bodies, whatever their length at rest, have foreshortened 
completely and have become pancakes of ultimate thinness.   
  

     But then what happens if the velocity of light is exceeded in that case, (v) becomes greater than (c), the expression v2 / 

c2 becomes greater than 1, and the expression  (1 - v2 / c2) becomes a negative number. Fitzgerald’s ratio is the square 
root of a negative number, and this is what mathematicians call an "imaginary number." A length represented by an 
imaginary number has mathematical interest, but no one has been able to work out the physical meaning of such a length.  
  
     This was the first indication that the velocity of light might have some important general significance in the universe--
as something that might, in some fashion, represent a maximum velocity. To be sure, no subatomic particle has ever been 
observed to move at a velocity greater than that of light in a vacuum, although velocities of better than 0.99 times that of 
light in a vacuum have been observed. At such velocities, the subatomic particles ought to be wafer-thin in the direction 



of their motion, but alas, they are so small that it is completely impractical to try to measure their length as they speed 
past, and one cannot tell whether they are foreshortened or not. If, however, the length of the speeding subatomic 
particles will not do as a practical test of the validity of the Fitzgerald contraction, another property will.  
  
     The Fitzgerald contraction was put into neat mathematical form, and extended, by the Dutch physicist Hendrik Antoon 
Lorentz (1853-1928) so that the phenomenon is sometimes referred to as the Lorentz-Fitzgerald contraction.   
  
     Lorentz went on to show that if the Fitzgerald contraction is applied to subatomic particles carrying an electric charge, 
one could deduce that the mass of a body must increase with motion in just the same proportion as its length decreases. In 
short, if its mass while moving is (m) and its rest-mass is m(0) then:  
  

m = m(0) / [square root (1 - v2 / c2) ]                                                 (Equation 6-7) 

  
Again, the gain in mass is very small at ordinary velocities. At a velocity of 260,000 kilometers per second, the mass of 
the moving body is twice the rest-mass, and above that velocity it increases ever more rapidly. When the velocity of a 
moving body is equal to that of light, v =c and Equation 6-7 becomes m = m(0) / 0. This means that the mass of the 
moving body becomes larger than any value that can be assigned to it. (This is usual expressed by saying that the mass of 
the moving body becomes infinite.) Once again, velocities greeter than light produced masses expressed by imaginary 
numbers, for which there seems no physical interpretation. The key importance of the velocity of light in a vacuum is 
again emphasized.   
  
     But the very rapidly moving charged subatomic particles possessing velocities up to 0.99 times that of light increase 
markedly in mass; and whereas the length of speeding subatomic particles cannot be measured as they fly past, their mass 
can be measured easily.   
  
     The mass of such particles can be obtained by measuring their inertia--that is, the force required to impose a given 
acceleration upon them. In fact, it is this quantity of inertia that Newton used as a definition of mass in his second law of 
motion.    
  
     Charged particles can be made to curve in a magnetic field. This is an acceleration imposed upon them by the 
magnetic force, and the radius of curvature is the measure of the inertia of the particle and therefore of its mass.   
  



     From the curvature of the path of a particle moving at low velocity, one can calculate the mass of the particle and then 
predict diet what curvature it will undergo when it passes through the same magnetic field at higher velocities, provided 
its mass remains constant. Actual measurement of the curvatures for particles moving at higher velocities showed that 
such curvatures were less marked than was expected. Furthermore, the higher the velocity, the more the actual curvature 
fell short of what was expected. This could be interpreted as an increase in mass with velocity, and when this was done 
the relationship followed the Lorentz equation exactly.   
  
     The fan had slipped and the green whiskers could be seen. The Lorentz equation fit the observed facts. Since it was 
based on the Fitzgerald equation, the phenomenon of foreshortening also fit the facts, and this explained the negative 
results of the Michelson-Morley experiment.  
  
   

CHAPTER 7 

Relativity 
  
  
The Special Theory  
  
If the gain in mass of a speeding charged particle is the result of its motion relative to the ether, then a new method of 
measuring such motion might offer itself. Suppose some charged particles are measured as they speed along in one 
direction, others as they speed in another direction, and so on. If all directions are taken into account, some particles are 
bound to be moving with the ether wind, while others, speeding in the opposite direction, are moving against it. Those 
moving against the ether wind (one might suspect) will have a more rapid motion relative to the ether and will gain more 
mass than will those moving at the same velocity (relative to ourselves) with the ether wind. By the changes in gain of 
mass as direction is changed, the velocity of the ether wind, and therefore the absolute motion of the earth, can be 
determined.   
  
     However, this method also fails, exactly as the Michelson-Morley experiment failed. The gain in mass with motion is 
the same no matter in which direction the particles move. What's more, all experiments designed to measure absolute 
motion have failed.   
   



In 1905, in fact, a young German-born, Swiss physicist, Albert Einstein (1879-1955), had already decided that it might be 
useless to search for methods of determining absolute motion. Suppose that one took the bull by the horns and simply 
decided that it was impossible to ·measure absolute motion by any conceivable method and considered the consequences.  
  
     That, then, was Einstein’s first assumption: that all motion must be considered relative to some object or some 
system of objects arbitrarily taken as being at rest; and that any object or system of objects (any frame of reference, that 
is) can be, taken, with equal validity, as being at rest. There is no object, in other words, that is more "really" at rest 
than any other.   
  
     Since in this view all motion is taken as relative motion only, Einstein was advancing what came to be called the 
theory of relativity. In his first paper on the subject, in 1905, Einstein considered only the special case of motion at 
constant velocity; therefore, this portion of his views is his special theory of relativity.   
  
     Einstein then made a second assumption: that the velocity of light in a vacuum, as measured, would always turn out 
to be the same, whatever the motion of the light source relative to the observer. (Notice that I speak of the velocity "as 
measured.")   
  
      This measured constancy of the velocity of light seems to be in violation of the "facts" about motion that had been 
accepted since the days of Galileo and Newton.   
  
     Suppose a person throws a ball past us and we measure the horizontal velocity of the ball relative to ourselves as x 
feet per minute. If the person is on a platform that is moving in the opposite direction at y feet per minute and throws 
the ball with the same force, its horizontal velocity relative to ourselves ought to be x - y feet per minute. If the 
platform were moving in the same direction he threw the ball, the horizontal velocity of the ball relative to ourselves 
ought to be x + y feet per minute.   
  
     This actually seems to be the situation as observed and measured in real life. Ought it not therefore be the same if 
the person were "throwing" light out of a flashlight instead of a ball out of his fist?   
  
     In order to make Einstein's second assumption hold true, we must suppose that this situation does not hold for light 
at all and, in fact, that it does not hold for the ball either.   
  



     Suppose that the effect of the moving platform on the speed of the ball is not quite as great as we suspect and that 
when the motion of the platform is added to that of the ball, the overall velocity of the ball is a vanishingly small 
amount smaller than x + y. Again, when the motion of the platform is subtracted from that of the ball the overall 
velocity of the ball is a vanishingly small amount greater than x - y. Suppose, too, that this discrepancy increases as x 
and y increase, but that at all velocities of material bodies, which we were capable of observing before 1900, the 
discrepancy remained tar too small to measure. Consequently, it would be very natural for us to come to the conclusion 
that the velocity was exactly x + y or exactly x - y, and that this would remain true for all speeds.   
  
     But if one could observe very great velocities, velocities of the order of thousands of kilometers per second, the 
discrepancy would become great enough to notice. If one indeed the velocity y to the velocity x, the combined velocity 
would then be notice- ably less than x $- y and might be hardly any greater than x alone. Similarly, if y were subtracted 
from x, the combined velocity might be considerably larger than x- y and hardly less than I alone. Finally, at the speed 
of light, the effect of the movement of the source of the moving body will have declined to zero so that r + y = x and x - 
y = x, regardless of how great y is. And that is another way of expressing Einstein's second assumption.   
  
     In order to save that assumption, in fact, it is necessary to add velocities in such a way that the sum never exceeds 
the velocity of light. Suppose, for instance, a platform is moving forward (with respect to ourselves) at 290,000 
kilometers a second, or only 10,000 kilometers a second less than the velocity of light in a vacuum. Suppose, further, 
that a ball is thrown forward from the platform at a velocity, relative to the platform, of 290,000 kilometers a second. 
The velocity of the ball relative to ourselves ought to be 290,000+290,000 kilometers a second in that forward 
direction, but at those velocities the effect of the moving platform has so decreased that the overall velocity is, in point 
of fact, only 295,000 kilometers per second and is still less than the velocity of light.   
  
     Indeed, this can be expressed mathematically. If two velocities [V(1) and V(2)] are added, then the new velocity (V) 
according to Newton would be V = V(1)  +  V(2)  According to Einstein, the new velocity would be: 

V = [V(1) + V(2)] / [ 1 + V(1) V(2) / C2] 

  
  
Where C is equal to the velocity of light in a vacuum. If V(1)  is equal to C, then Einstein's equation would become: 

V = [V(1) + V(2)] / [ 1 + V(1) V(2) / C2] = [C + V(2)] [C / [C + V(2)] = C 

  
  



     In other words, if one velocity were equal to the speed of light, adding another velocity to it, even again up to the 
speed of light, would leave the total velocity merely at the speed of light.   
  
     To put it briefly, it is possible to deduce from Einstein's assumption of the constant measured velocity of light that 
the velocity of any moving body will always be measured as less than the velocity of tight.'   
  
     It seems strange and uncomfortable to accept so unusual a set of circumstances just to save Einstein's assumption of 
the measured constancy of the velocity of light. Nevertheless, whenever it has been possible to measure the velocity of 
light, that velocity has always been placed at one constant value, and whenever it has been possible to measure the 
velocity of speeding bodies, that velocity has always been less than the velocity of light. In short, no physicist has yet 
detected any phenomenon that can be taken as violating either Einstein's assumption of relativity of motion or his 
assumption of measured constancy of light; and they have looked assiduously, you may be sure.   
  
     Einstein could also deduce from his assumptions the existence of the Lorenz Fitzgerald contraction as well as the 
Lorentz gain of mass with motion. Furthermore, he showed that it was not only electrically charged particles that 
gained mass with motion, but uncharged panicles as well. In fact, all objects gained mass with motion.   
  
     It might seem that there is scarcely any reason to crow over the special theory so far. What is the difference between 
starting with the assumption of the Lorenz Fitzgerald contraction and deducing from it the measured constancy of the 
velocity of light, or starting with the assumption of the measured constancy of the velocity of light and deducing from it 
the Lorenz Fitzgerald contraction?   
  
     If that were all, there would be no significant difference, indeed. However, Einstein combined his assumption 
concerning the measured constancy of the velocity of light with his first assumption that all motion is relative.   
  
     This meant that foreshortening or mass-gain was not a "real" phenomenon but only a change in measurement. The 
amount by which length was decreased or mass increased was not something that could be absolutely determined but 
differed from observer to observer.   
  
     To consider what this means, imagine two identical space ships moving in opposite directions in a non-collision 
course, each spaceship possessing equipment that will enable it to measure the length and mass of the other spaceship 
as it passes by.   



  
     Spaceship X watches Spaceship Y flash by (in a particular direction) at 260,000 kilometers per second, and at this 
velocity Spaceship Y is measured as being only half its rest-length and fully twice its rest-mass. Spaceship X, which to 
the people on board seems to be motionless, is to them, naturally, exactly at rest-length and rest-mass.   
  
     But the people on Spaceship Y have no sensation of moving (any more than we have the sensation of speeding 
through space on our voyage around the sun). The people on Spaceship Y feel themselves to be motionless and find 
themselves to be at rest- length and rest-mass. What they see is Spaceship X flashing by (in the opposite direction) at 
260,000 kilometers per second. To them it is Spaceship X that is measured as being only half its rest- length and fully 
twice its rest-mass.   
  
     If the observers could communicate while in motion, they could have a glorious argument. Each could say, "I am at 
rest and you are moving. I am normal length, you are foreshortened. I am normal mass, you are heavy."   
  
     Well, which one is really "right"?   
  
     The answer is neither and both. It is not a question; you see, of what has "really" happened to length and mass or of 
which ship is "really" foreshortened or over-massive. The question is only of measurement. (It is--to make a trivial 
analogy--like measuring the side of a rectangle that is four meters by two meters and then arguing about whether the 
length of the rectangle is "really" four meters or "really" two meters. It depends on the side you are measuring.) 
  
But suppose you attempt to perform some kind of test that will, perhaps, reach beyond the measurement to the "reality." 
Suppose, for instance, you brought the two ships together and compared them directly to see which was shorter and 
heavier. This cannot actually be done within the bounds of Einstein's special theory since that deals only with uniform 
motion. To bring the ships together means that at least one of them must turn round and come back and thus undergo 
non-uniform, or accelerated, motion. Even if we did this, however, and imagined the two ships side by side and at rest 
relative to each other, after having passed each other at super-velocities, we could make no decision as to "realities." 
Being at rest with respect to each other, each would measure the other as being normal in length and mass. If there had 
been a "real" change in length or mass in either ship in the past, there would remain no record of that change.   
  
     Despite everything, it is difficult to stop worrying about "reality.'' It is heartening, then, to remember that there have 
been times when we I have abandoned a spurious "reality" and have not only survived but have been immeasurably the 



better for it.   
  
     Thus, a child is pretty certain he knows what "up" and "down" is. His head points "up," his feet point "down" (if he 
is standing in the normal fashion); he jumps "up," he falls "down." Furthermore, he discovers soon enough that 
everyone around; him agrees as to which direction is "up" and which "down."   
  
     If a child with such convictions is shown a picture of the earth's globe, with the United States above and Australia 
below, and with little Americans standing head-up and little Australians standing head-down, his first thought may well 
be, "But that's impossible. The little Australians would fall off."   
  
     Of course, once the effect of the gravitational force is understood (and this was understood as long ago as Aristotle, 
at least as far as the earth itself was concerned) then there is no longer fear that anyone would fall off any part of the 
earth. However, you might still be questioning the nature pf "up" and "down." You might call up an Australian on long-
distance telephone and say, "I am standing head-up, so you must be standing head-down." He would reply. "No, no. I 
am clearly standing head-up, so it must be you who is standing head-down."   
  
     Do you see, then, how meaningless it is to ask now who is right and who is "really" standing head-up? Both are 
right and both are wrong. Each is standing head-up in his own frame of reference, and each is standing head-down in 
the other's frame of reference.  
  
    Most people are so used to this that they no longer see a "relative up” and a "relative down" as being in violation of 
"common sense." In fact, it is the concept of the "absolute up" and the "absolute down" that seems a violation now. If 
anyone seriously argued that the Australians walked about suspended by their feet, he would be laughed at for his 
ignorance.   
  
     Once the tenets of the relativistic universe are accepted (at as early an age as possible) it, too, ceases to go against 
common sense.  
  
Mass-Energy Equivalence   
  
     During the nineteenth century, chemists were increasingly convinced that mass could neither be created nor 
destroyed (the law of conservation of mars). To Lorentz and Einstein, however, mass was created as velocity increased 



and it was destroyed as velocity decreased. To be sure, the changes in mass are vanishingly small at all ordinary 
velocities, but they are there. Where, then, does created mass come from, and where does destroyed mass go?   
  
     Let's begin by considering a body of a given mass (m) subjected to a given force (f) Under such conditions the body 
undergoes an acceleration (a), and from Newton's second law of motion (see page I-30) one can state that a=f/m. The 
presence of an acceleration means that the velocity of the body is increasing, but in the old Newtonian view this did not 
affect the mass of the body, which remained constant. If the force is also viewed as remaining constant, then f/m was 
constant and a, the acceleration, was also constant. As a result of such a constant acceleration, the velocity of the body 
(in the Newtonian view) s would increase indefinitely and would reach any value you care to name--if you wait lone 
enough.   
  
     In the Einsteinian universe, however, an observer measuring the velocity of an object under a continuing constant 
force can never observe it to exceed the velocity of light in a vacuum. Consequently, though its velocity increases 
under the influence of a constant force that velocity increases more and more slowly, and as the velocity approaches 
that of light, it increases exceedingly slowly. In short, the acceleration of a body under the influence of a constant farce 
decreases as the velocity increases and becomes zero when the velocity reaches that of light.   
  
     But, again from Newton's second law of motion, the mass of a body is equal to the force exerted upon it divided by 
the acceleration produced by that force--that is, m = f/a If the force is constant and the acceleration decreases with 
velocity, then a decreases with velocity while f does not; consequently, f/a increases with velocity. And this means, 
since m = f/a, that mass increases with velocity. (Thus, the increase of mass with velocity can be deduced from 
Einstein's assumption of the measured constancy of the velocity of light in a vacuum.)   
  
     When a body is subjected to a force, it gains kinetic energy, which is equal to one half its mass times the square of 
its velocity (e(k)=1/2mva). In the Newtonian view this increase in kinetic energy results only from the increase in 
velocity, for mass is considered unchanging. In the Einsteinian view the increase in kinetic energy is the result of an 
increase in both velocity and mass.   
  
     Where mass is not involved in energy changes (as in the Newtonian view) it is natural to think of mass as something 
apart from energy and to think that, on the one hand, there is a law of conservation of energy, and on the other, a law of 
conservation of mass, and that the two are independent.   
  



     Where mass changes and is thus intimately involved in energy changes (as in the Einsteinian view), it is natural to 
think of mass and energy as different aspects of the same thing, so a law of conservation of energy would include mass. 
(To make that perfectly clear, in view of our previous convictions, we sometimes speak of the law of conservation of 
mass-energy, but the word "mass" is not really needed.)                                                        u   
  
     Motion does not create mass in any real sense; mass is merely one aspect of a general increase in kinetic energy 
gained from the force that is maintained by the expenditure of energy elsewhere in the system.   
  
     But now suppose the law of conservation of energy (including mass) remains valid in the relativistic universe (and 
so far it seems to have done so). According to this law, although energy can be neither created nor destroyed, it can be 
changed from one form to another. This would seem to mean that a certain quantity of mass could be converted into a 
certain quantity of other forms of energy such as heat, for instance; and that a certain quantity of a form of energy such 
as heat might, conceivably, be converted into a certain quantity of mass. And this, indeed, Einstein insisted upon.   
  
     This equivalence of mass and energy announced by Einstein in his 1905 paper was of great use to the physicists of 
the time. The discovery of radioactivity nine years earlier (something I will discuss in volume 3) had revealed a 
situation in which energy seemed to be created endlessly out of nowhere. Once the special theory of relativity pointed 
the way, scientists searched for disappearing mass and found it. 
    It may seem surprising that no one noticed the interchange of mass and energy until Einstein pointed it out 
theoretically. The reason for that rests with the nature of equivalence – in the determination of exactly how much 
energy is equivalent to how much mass.  

    To determine that, let’s consider the reciprocal of the Fitzgerald ratio, which is (1 – v2 / c2) -1/2. An expression 

written in this fashion can be set to belong to a family of the type (1 – b) -a . By the binomial theorem (a mathematical 

relationship first worked out by Newton himself), the expression (1 – b) –a  can be expanded into and endless series of 

terms that begins as follows: 1 + ab + .5 (a2  + a) b2  + …. 

  

   To apply this expansion to the reciprocal of Fitzgerald ratio, we must set a = .5 and b = v2 / c2  . The Fitzgerald ratio 

then becomes: 1 + v2 / 2c2    + 3v4 / 8c4   …… 

   Since c, the velocity of light may be considered to have a constant value, the second and third terms (and, indeed, all 
the subsequent terms of this finite series) grow larger as v increases. But v reaches a maximum when the velocity of a 
moving body attains the velocity of light (at least, we can measure no higher velocity) therefore, the various terms are 



then at their maximum value, and v = c the series becomes 1 +  ½  + 3/8 …..  As you see, the second terms is, at most, 
less than the first, while the third term is, at most, less than the second, and so on. 
   The decrease is even sharper at lower velocities, and successive terms become rapidly more and more insignificant. 
When v = c/2 (150,000 kilometers per second) the series is 1 + 1/8 + 3/128… when v = c/4 ( 75,000 kilometers per 
second), the series is 1 + 1/32 + 3/2048 … 
   In a decreasing series of this sort it is possible to show that the tail end of the series (even though it includes an 
infinite number of terms) reaches a finite and small total. We can therefore eliminate all but the first few terms of the 
series and consider those first few a good approximation of the whole series.  
   At ordinary velocities, for instance, all the terms of the series except the first (which is always 1) becomes such small 
fractions that they can be ignored completely. In that case reciprocal of the Fitzgerald ratio can be considered as equal 
to 1 with a high degree of accuracy (which is why changes in length and mass with motion went unnoticed until the 
twentieth century). To make it still more accurate, especially at very high velocities, we can include the first two terms 
of the series. That is accurate enough for all reasonable purposes, and we need not worry at all about the third term or 
any beyond it.   
  
     We can say, then, with sufficient accuracy that:  
  

1 / [square root of (1 – v2 / c2 ) = 1 + v2  / 2 c2                                    (Equation 7-1)   

  
     Now let us return to the Lorentz mass relationship (Equation 6-7), which states that the mass m(1) of a body in 
motion is equal to its rest-mass m(0) divided by the Fitzgerald ratio. This is equivalent to saying that m(1)is equal to m
(0) multiplied by the reciprocal of the Fitzgerald ratio; therefore, using the new expression for that reciprocal given in 
Equation 7-1, we can write the mass relationship as follows:  
  

m(1) = m(0) (1 + v2  / 2 c2 )                                                                (Equation 7-2)                      

     The increase in mass as a result of motion is m(1) – m(0), and we can call this difference simply m. If we solve 
Equation 7-2 for m(1) – m(0) (that is, for m), we find that. 
  

 m = m(0) v2  / 2 c2  = ½ m(0) v2  /  c2                                                                             (Equation 7-3)   

  

     The expression ½ m(0) v2 , found in the right-hand portion of Equation 7-3, happens to he the value of the kinetic 



energy of the moving body (kinetic energy is equal to ½ m v2 ), if it possesses its rest-mass. Actually, it possesses a 
slightly higher mass due to its motion, but except for extremely high velocities, the actual mass is only very slightly 

higher than the rest-mass--so little higher in fact that we can let ½ m(0) v2 equal its kinetic energy and be confident of a 
high degree of accuracy. If we let this kinetic energy be represented as e. then Equation 7-3 becomes: 
  

m = e/c2                                                                                                        (Equation 7-4)   

  
     Remember that m represents the gain of mass with motion. Since very rapid motion, representing a very high value 
of, r, (the kinetic energy) produces only a very small increase in mass, we see quite plainly that a great deal of ordinary 
energy is equivalent to a tiny quantity of mass. Equation 7-4, which by clearing fractions can be written as the much 
more familiar:  
  

e = mc2                                                                                                   (Equation 7-5)  

  
can be used to calculate this equivalence.   
  
     In the cgs system, where all the units are in terms of centimeters, grams and seconds, the value of c (the velocity of 

light in a vacuum) is 30,000,000,000 centimeters per second. The value of c2 is therefore 900,000,000,000,000,000,000 

cm2/ sec2. If we set the value of m at 1 gram, then mc2 is equal to 900,000,000,000,000,000,000 gm-cm2/sec2; or, since 

1 gm- cm2/sec2 is defined as an "erg," 1 gram of mass is equal to 900,000,000,000,000,000,000, ergs of energy.   

  
     One kilocalorie is equal to 41,860,000,000 ergs. This means that 1 gram of mass is equivalent to 21,500,000,000 
kilocalories. The combustion of a gallon of gasoline liberates about 32,000 kilocalories. The mass equivalence of this 
amount of energy is 32,000/21,500,000,000 or 1/670,000 of a gram. This means that in the combustion of a full gallon 
of gasoline, the evolution of energy in the form of heat, light, the mechanical motion of pistons, and so on involves the 
total loss to the system of 1/670,000 of a gram of mass. It is small wonder that chemists and physicists did not notice 
such small mass changes until they were told to look for it.   
On the other hand, if whole grams of mass could be converted wholesale into energy, the vast concentration of energy 
produced would have tremendous effects. In Volume III the steps by which it was learned how to do this will be 
outlined. The results are the nucleon bombs that now threaten all mankind with destruction and the nuclear reactors that 
offer it new hope for the future.  



  
     Furthermore, Equation 7-5 offered the first satisfactory explanation of the source of energy of the sun and other 
stars. In order for the sun to radiate the vast energies it does, it must lose 4,600,000 tons of mass each second. This is a 
vast quantity by human standards but is insignificant to the sun. At this rate it can continue to radiate in essentially 
unchanged fashion for billions of years.   
  

     The Einstein equation, e = mc2, as you see, is derived entirely from the assumption of the constant measured 
velocity of light, and the mere existence of nuclear bombs is fearful evidence of the validity of the special theory of 

relativity. It is no wonder that of all equations in physics, e = mc2 has most nearly become a household word among the 
general population of non-physicists.  
  
Relative Time  
  
Einstein deduced a further conclusion from his assumptions and went beyond the Lorenz Fitzgerald dealings with 
length and mass to take up the question of time as well.   
  
     The passing of time is invariably measured through some steady periodic motion: the turning of the earth, the 
dripping of water, the beating of a pendulum, the oscillation of a pendulum, even the vibration of an atom within a 
molecule. However, the changes in length and mass with increasing velocity must inevitably result in a slowing of the 
period of all periodic motion. Time therefore must be measured as proceeding more slowly as velocity relative to the 
observer is increased.   
  
     Again, the Fitzgerald ratio is involved. That-is, the time lapse (t) observed on a body moving at a given velocity 
relative to the time lapse at rest t(0) is as follows:  
  

t = t(0) [square root of  (1 -  v2/ c2 )                                                                      (Equation 7-6)   

  
     At a velocity of 260,000 kilometers per second past an observer, t would equal t(0)/2. In other words, it would take 
one hour of the observer's time for half an hour to seem to pass on the moving object. Thus, if an observer's clock said 
1:00 and a clock on the moving object also said 1:00, then one hour later the. Observer’s clock would say 2:00, but the 
clock on the moving object would say only 1:30.   



  
     At a velocity equal to that of light, t would equal 0. It would then take forever for the clock on the moving object to 
show any time lapse at all to the observer. As far as the observer would be able to note, the clock on the moving object 
would always read 1:00; time would stand still on the object. This slowing of time with motion is called time 
dilatation.   
  
     Strange as this state of affairs seems, it has been checked in the case of certain short-lived subatomic particles. 
When moving slowly, they break down in a certain fixed time. When moving very rapidly, they endure considerably 
longer before decaying. The natural conclusion is that we observe a slowing of time for the speedily moving particles. 
They still decay in, say, a millionth of a second, but for us that millionth of a second seems to stretch out because of the 
rapid motion of the particle.    
  
     As in the case of length and mass, this change in time is a change in measurement only (as long as the conditions of 
the special theory are adhered to), and this varies with the observer.   
  
     Suppose, for instance, we return to Spaceship X and Spaceship Y as they flash past each other. The men on 
Spaceship X, watching Spaceship Y flash by at 260,000 kilometers a second and observing a pendulum clock on board 
spaceship Y, would see the clock beat out its seconds at two-second intervals. Everything on Spaceship Y would take 
twice the usual time to transpire (or so it would seem to the observer on Spaceship X). The very atoms would move at 
only half their usual speed.   
  
     The people on Spaceship Y would be unaware of this, of course considering themselves at rest, they would insist 
that it was Spaceship X that was experiencing slowed time. (Indeed, if the spaceships had flashed by each other in such 
a way that each measured the velocity of the other as equaling the velocity of light, each would insist that it had 
observed time on the other ship having come to a full halt.)   
  
     This question of time is trickier, however: than that of length and mass. If the spaceships are brought together after 
the flash-by, and placed at mutual rest, length and mass are now "normal" and no record is left of any previous changes, 
so there need be no worries about "reality."   
  
     But as for time, consider... Once at mutual rest, the clocks are again proceeding at the "normal" rate and time lapses 
are equal on both ships. Yet, previous changes in time lapses have left a record. If one clock has been slowed and has, 



in the past, registered only half an hour while the other clock was registering an hour the first clock would now be half 
an hour slow! Each ship would firmly claim that the clock on the other ship had been registering time at a slower-than-
normal rate, and each would expect the other's clock to be slow.   
  
     Would this be so? Would either clock be slow? And if so, which?   
  
     This is the clock paradox, which has become famous among physicists.   
  
     There is no clock paradox if the conditions of the special theory are adhered to strictly--that is, if both ships continue 
eternally in uniform motion. In that case, they can never be brought together again, and the difference in measurement 
remains one that can never be checked against "reality."   
  
     In order to bring the ships together, at least one of them must slow down, execute a turn, speed up and overtake the 
other.  In all this it undergoes non-uniform velocity, or acceleration, and we are promptly outside the special theory.   
  
     Einstein worked on problems of this sort for ten years after having enunciated his special theory and, in 1915, 
published his general theory of relativity, in which the consequences of non- uniform or accelerated motion are taken 
up. This is a much more subtle and difficult aspect of relativity than is the special theory, and not all theoretical 
physicists entirely agree on the consequences of the general theory.   
  
     Suppose we consider our spaceships as alone in the universe. Spaceship Y executes the slowdown, turn, and 
speedup that brings it side by side with Spaceship X. But, by the principle of relativity, the men on Spaceship Y have 
every right to consider themselves at rest. If they consider themselves at rest, then it is Spaceship X that (so it seems to 
them) slows down, turns, and then backs up to them. Whatever effect the men on Spaceship X observe on Spaceship Y, 
the men on board Spaceship Y will observe on Spaceship X. Thus, it might be that when the two ships are finally side 
by side, the two clocks will somehow tell the same time.   
  
     Actually, though, this will not occur, for the two spaceships are not alone in the universe. The universe is filled with 
a vast amount of matter, and the presence of this amount of matter spoils the symmetry of the situation of Spaceships X 
and Y.   
  
     Thus, if Spaceship Y executes its turn, Spaceship X observes it make that turn. But as Spaceship X considers itself 



at rest, it continues to see the rest of the universe (the stars and galaxies) slip past it at a constant, uniform velocity 
reflecting its own constant, uniform velocity. In other words, Spaceship X sees only Spaceship Y and nothing else 
undergo non-uniform motion.   
  
     On the other hand if Spaceship Y considers itself at rest, it observes that not only does Spaceship X seem to undergo 
an acceleration but also all the rest of the universe.   
  
     To put it another way, Spaceship Y and Spaceship X both undergo non-uniform motion relative to each other, but 
the universe as a whole undergoes non-uniform motion only relative to Spaceship Y. The two ships, naturally enough, 
are influenced differently by this tremendous difference in their histories, and when they are brought together, it is 
Spaceship Y (which has undergone non-uniform motion relative to the universe as a whole) that carries the slowed 
clock. There is no paradox here, for the crews on both ships must have observed the non-uniform motion of the 
universe relative to Spaceship Y. and so both agree on the difference in histories and cannot seek refuge in a "my-
frame- of-reference-is-as-good-as-yours" argument.   
  
     Now suppose a space traveler leaves earth and, after a while, is traveling away from us at a speed nearly that of 
light. If we could observe him as he traveled, we would see his time pass at only perhaps one-hundredth the rate ours 
does. If he observed us, he would see our time pass at only one-hundredth the rate his does. If the space traveler wanted 
to return, however, he would have to turn, and he would experience non-uniform motion relative to the universe as a 
whole. In other words, in turning, he would observe the entire universe turning about him, if he insisted on considering 
himself at rest. The effect of this is to make the time lapse less for him as far as both he and the stay-at-home earthmen 
are involved.   
  
     The round trip may have seemed to him to have lasted only a year, but on the earth a hundred years would have 
passed. If the space traveler had a twin brother, left behind on earth, that brother would long since have died of old age, 
while the traveler himself would scarcely have aged. (This is called the twin paradox.) It is important, however, to 
realize that the space traveler has not discovered a fountain of youth. He may have aged only a year in an earth-century, 
but he would only have lived a year in that earth- century. Moreover, no matter what his velocity, time would never 
appear, either to him or to the earth-bound observers, to go backward. He would never grow younger.   
  
     The variation of the rate at which times passes as velocity changes destroys our concept of absoluteness of time. 
Because of this, it becomes impossible to locate an event in time in such a way that all observers can agree. In addition, 



no event can be located in time until some evidence of the event reaches the observer, and that evidence can only travel 
at the velocity of light.   
  
     As a simple example, consider the space traveler returning to earth, after having experienced a time lapse of one 
year, and finding that his twin brother had died fifty years earlier by earth time. To the traveler this may seem 
impossible, since fifty years earlier (to him) his twin brother had not even been born yet.   
  
     In fact, in the mathematical treatment of the theory of relativity, it does not make sense to deal with space alone or 
time alone. Rather the equations deal with a fusion of the two (usually called space-time). To locate a point in space-
time, one must express a value for each of three spatial dimensions, plus a value for time; time being treated somewhat 
(but not exactly) like the ordinary three dimensions. It is in that sense that time is sometimes spoken of as the "fourth 
dimension."   
  
     It is sometimes argued that the existence of relative time makes a possible to measure a velocity of more than that of 
light. Suppose, for instance, a spaceship travels from earth to a planet ten light-years distant and does this at so great a 
velocity that time dilatation makes it seem to the crewmen that only one year has passed in the course of the voyage.   
  
     Since the ship has traveled in one year a distance traversed by light in ten years, has not the ship traveled at ten 
times the velocity of light?   
  
     The answer is it has not. If the crewmen were to argue that they had, they would be measuring the time lapse of one 
year against their own frame of reference, and the distance of the planet from earth (ten light-years) by earth's frame of 
reference. They must ask instead: What is the distance of the destination-planet from earth in the frame of reference of 
the ship?   
  
     In the ship's frame of reference, the ship is, of course, motionless, while the universe, including earth and the 
destination- planet, slips backward past it at an enormous velocity. The entire universe is foreshortened, as one would 
expect from the Fitzgerald contraction, and the distance from earth to the destination-planet is much less than ten light-
years. The distance is less than one light-year, in fact, so the ship can traverse that distance in one year without having 
exceeded the velocity of light.   
  
     Again, although the ship took only one year to get to its destination, this did not mean they beat light there, even 



though a light beam, released from earth simultaneously with the ship, would have taken ten years to cover a ten-light-
year distance. That ten-year time lapse would be true only in the earth's frame of reference. For the light beam's own 
frame of reference, since it travels at the velocity of light, the rate of passage of time would decline to zero, and the 
light beam would get to Alpha Centauri (or to any spot in the universe, however distant) in no time at all.   
  
     Nor can one use this to argue that in the light beam's own frame of reference its velocity is then infinite; for in the 
light beam's own frame of reference, the total thickness of the universe, in the direction of its travel, is foreshortened to 
zero, and of course it would take no time for light to cross a zero-thickness universe even if its velocity is the finite one 
of 300,000 kilometers per second.   
  
The General Theory   
  
     One of the basic assumptions in the special theory was that it was impossible to measure absolute motion; that any 
observer had the privilege of considering himself at rest; and that all frames of reference were equally valid.   
  
     Yet when we consider non-uniform motion (outside the realm of special theory) the possibility arises that this is not 
so. Suppose, for instance, that two spaceships are moving side by side at uniform velocity. The crewmen on each ship 
can consider both themselves and the other ship to be at rest. Then, suddenly, Spaceship Y begins to move forward 
with reference to Spaceship X.   
  
     The crewmen on Spaceship X could maintain that they were still at rest while Spaceship Y had begun to move 
forward at an accelerating velocity. The crewmen on Spaceship Y, however could maintain that, on the contrary, they 
were at rest while Spaceship X had begun to move backward at an accelerating velocity. Is there any way, now, to 
decide between these conflicting observations?   
  
     In the case of such non-uniform motion, perhaps. Thus, Spaceship Y were "really" accelerating forward, the men 
within it would feel an inertial pressure backward (as you are pressure back into your seat when you step on your car's 
gas-pedal.) On the other hand, if Spaceship X is accelerating backward, the men within it would feel an inertial 
pressure forward (as you lurch toward the windshield when you step on your car's brake). Consequently, the crews of 
the spaceships could decide which ship was "really" moving by taking note of which set of crewmen felt inertial 
pressures.   
  



     From this, one could perhaps determine absolute motion from the nature and size of inertial effects. Einstein, in his 
general theory of relativity, worked out what properties the universe must possess to prevent the determination of 
absolute motion in the case of non-uniform motion.   
  
     The Newtonian view of mass had dealt, really, with two kinds of mass. By Newton's second law of motion, mass 
was defined through the inertia associated with a body. This is "inertial mass." Mass may also be defined by the 
strength of the gravitational field to which it gives rise. This is "gravitational mass." Ever since Newton, it had been 
supposed that the two masses were really completely identical, but there had seemed no way of proving it. Einstein did 
not try to prove it; he merely assumed that inertial mass and gravitational mass were identical and went on from there.   
  
     It was then possible to argue that both gravitation and inertial effects were not the property of individual bodies 
alone, but of the interaction of the mass of those bodies with all the remaining mass in the universe.   
  
     If a spaceship begins to accelerate in a forward direction, the crewmen feel an inertial pressure impelling them to the 
rear. But suppose the crewmen in the spaceship insist on regarding themselves as at rest. They must then interpret their 
observations of the universe as indicating that all the stars and galaxies outside the ship are moving backward at an 
accelerating velocity. The accelerating motion backward of the distant bodies of the universe drags the crewmen back, 
too, producing an inertial effect upon them, exactly as would have happened if the universe had been considered at rest 
and the ship as accelerating forward.   
  
     In short, inertial effects cannot be used to prove that the ship is "really" accelerating. The same effect would be 
observed if the ship were at rest and the universe were accelerating. Only relative non-uniform motion is demonstrated 
by such inertial effects: either a non-uniform motion of the ship with reference to-the universe or a non-uniform motion 
of the universe with reference to the ship. There is no way of demonstrating which of these two alternatives is the "real" 
one.   
  
     We might also ask if the earth is "really" rotating. Through most of man's history, the earth was assumed motionless 
because it seemed motionless. After much intellectual travail, its rotation was demonstrated to the satisfaction of 
scientists generally and to those non-scientists who followed the arguments or were willing to accept the word of 
authority. But is it "really" rotating?   
  
     One argument in favor of the rotation of the earth rests on the existence of the planet's equatorial bulge. This is 



explained as the result of a centrifugal effect that must surely arise from a rotation. If the earth did not rotate, there 
would be no centrifugal effect and it would not bulge. The existence of the bulge, therefore, is often taken as proof of a 
"real" rotation of the earth.   
  
     This argument might hold, perhaps, if the earth were alone in the universe, but it is not. If the earth is considered 
motionless, for argument's sake, one must also think of the enormous mass of the universe revolving rapidly about the 
earth. The effect of this enormous revolving mass is to pull out the earth's equatorial bulge--just as the centrifugal effect 
would if the earth rotated and the rest of the universe were motionless. One could always explain all effects of rotation 
equally well in either frame of reference.   
  
     You might also argue that if the earth were motionless and the rest of the universe revolved about it, the distant 
stars, in order to travel completely around their gigantic orbits about earth in a mere 24 hours, must move at many, 
many times the velocity of light. From this one might conclude that the rotation of the universe about the earth is 
impossible and that therefore the earth is "really" rotating. However, if the universe is considered as rotating about the 
earth and if the distant stars are traveling, in consequence, at great velocities, the Fitzgerald contraction will reduce the 
distances they must cover to the point where their velocity will be measured as less than that of light.   
  
     Of course, one might raise the argument that it simply isn't reasonable to suppose the entire universe is revolving 
about the earth--that one must naturally prefer to believe that it is the earth's rotation that produces the apparent 
revolution of the universe. Similarly it is much more sensible to believe that a spaceship is accelerating forward rather 
than to suppose an entire universe is accelerating backward part one motionless ship, reasonable to   
  
     This is true enough, and it is so much reasonable assume a rotating earth (or a moving ship) that astronomers will 
continue to assume it, regardless of the tenets of relativity. However, the theory of relativity does not argue that one 
frame of reference may not be simpler or more useful than another--merely that one frame of reference is not more 
valid than another.   
  
     Consider that at times it is the motionlessness of the earth that is assumed because that makes for greater simplicity. 
A pitcher throwing a baseball never takes into account the fact that the earth is rotating. Since he, the ball, and the 
waiting batter are all sharing whatever velocity the earth possesses, it is easier for the pitcher to assume that the earth is 
motionless and to judge the force and direction of his throw on that basis. For him the motionless-earth frame of 
reference is more useful than the rotating-earth frame of reference--yet that does not make the motion- less-earth frame 



of reference more valid.  
  
Gravitation   
  
     In his general theory, Einstein also took a new look at gravitation. To Newton it had seemed that if the earth 
revolved about the sun there must be a force of mutual attraction between the earth and the sun. Einstein showed that 
one could explain the revolution of the earth about the sun in terms of the geometry of space.   
  
     Consider an analogy. A putter is addressing a golf ball toward the cup over a level green. The golf ball strikes the 
edge of the cup and dips in. It is, however, going too fast so that it spins about the vertical side of the cup (bobsled 
fashion) and emerges at the other end, rolling in a new direction. It has partly circled the center of the cup, yet no one 
would suppose that there was a force of attraction between the golf ball and the center of the cup.   
  
     Let us imagine a perfectly level, frictionless, putting green of infinite extent. A ball struck by the golf club will 
continue on forever in a perfectly straight line.   
  
     But what if the putting green is uneven; if there are bumps and hollows in it? A ball rising partly up the side of a 
bump will curve off in a direction away from the center of the bump. A ball dropping down the side of a hollow will 
curve toward the center of the hollow. If the bumps and hollows are, for some reason, invisible and undetectable, we 
might be puzzled at the occasional deviations of the balls from straight-line motion. We might suppose the existence of 
hidden forces of attraction or repulsion pulling or pushing the ball this way and that.   
  
     Suppose one imagined a cone-shaped hollow with steep sides on such a green. A ball can be visualized as taking up 
a closed "orbit" circling around and around the sides like a bobsled speeding endlessly along a circular bank. It friction 
existed; the circling ball would lose kinetic energy and, little by little, sink to the bottom of the cone. In the absence of 
friction, it would maintain its orbit.   
  
     It is not difficult to form an analogous picture of the Einsteinian version of gravity. Space-time would be a four-
dimensional analogy of a flat putting green, if it were empty of matter. Matter, however, produces "hollows"; the more 
massive the matter, the deeper the "hollow." The earth moves about the sun as though it were circling the sun's hollow. 
If there were friction in space, it would slowly sink to the bottom of the "hollow" (that is, spiral into the sun). Without 
friction, it maintains its orbit indefinitely. The elliptical orbit of the earth indicates that the orbit about the "hollow" is 



not perfectly level with the flatness of the four-dimensional putting green. (The orbit would be a circle, if it were.) A 
slight tilt of the orbit produces a slight ellipticity, while a more marked tilt produces greater ellipticity.    
  
     It is these "hollows" produced by the presence of matter that give rise to the notion of curved space.   
  
The consequences of the special theory of relativity--mass increase with motion and the equivalence of mass and 
energy, far instance-were easily demonstrated. The validity of the general theory was much more difficult to prove. 
Einstein's picture of gravitation produces results so nearly like those of Newton's picture that it is tempting to consider 
the two equivalent and then accept the one that is simpler and more "common sense," and that of course, is the 
Newtonian picture.   
  
     However, there remained some areas where the consequences of the Einsteinian picture were indeed somewhat 
different from those of the Newtonian picture. By studying those consequences one might choose between the two on 
some basis more satisfying than that of mere simplicity. The first such area involved the planet Mercury.   
  
     The various bodies in the solar system move, in the Newtonian view, in response to the gravitational forces to which 
they are subjected. Each body is subjected to the gravitational forces of every other body in the universe, so the exact 
and complete solution of the motions of any body is not to be expected. However, within the Solar system, the effect of 
the gravitational field of the sun overwhelming. While the gravitational fields of a few other bodies quite close to the 
body whose motion is being analyzed are also significant, they are minor. If these are taken into account, the motion of 
a planet of the solar system can be explained with a degree of accuracy that satisfies everybody. If residual 
disagreements between the predicted motion and the actual motion remain, the assumption is that some gravitational 
effect has been ignored.   
  
     The presence of a discrepancy in the motion of Uranus, for instance, led to a search for an ignored gravitational 
effect, and the discovery, in the mid-nineteenth century, of the planet Neptune.   
  
     At the time of Neptune's discovery, a discrepancy in the motion of Mercury, the planet nearest the sun, was also 
being studied. Like the other planets, Mercury travels in an ellipse about the sun, with the sun at one of the foci of the 
ellipse. This means that the planet is not always at the same distance from the sun. There is a spot in its orbit where it is 
closest to the sun, the perihelion, and a spot at the opposite end of the orbit where it is farthest from the sun, the 
aphelion. The line connecting the two is the major axis. Mercury does not repeat its orbit exactly, but moves in such a 



way that the orbit is actually a rosette, with the major axis of the ellipse slowly revolving.          
  
     This can be explained by the gravitational effect of nearby planets on Mercury, but it cannot all be explained. After 
all known gravitational effects are accounted for, the actual rate at which the major axis (and its two extreme points, the 
perihelion and aphelion) turned was slightly greater than it ought to have been--greater by 43.03 seconds of arc per 
century. This meant that the major axis of Mercury's orbit made a complete turn, and an unexplained one, in 3,000,000 
years.   
  
     Leverrier, one of the men who had discovered Neptune, suggested that an undiscovered planet might exist between 
Mercury and the sun, and that the gravitational effect of this planet on Mercury could account for that additional motion 
of the perihelion. However, the planet was never found, and even if it existed (or if a belt of planetoids of equivalent 
mass existed neat the sun) there then would also be gravitational effects on Venus, and these have never been detected.   
  
     The situation remained puzzling for some seventy years until Einstein in 1915 showed that the general theory of 
relativity altered the view of gravity by just enough to introduce an additional factor that would account for the 
unexplained portion of the motion of Mercury's perihelion. (There would be similar but much smaller effects on the 
planets farther from the sun-too small to detect with certainty.)   
  
     Einstein also predicted that light beams would be affected by gravity, a point that was not allowed for in the 
Newtonian view. The light of stars passing very close to the sun, for instance, would be affected by the geometry of 
space and would bend inward toward the center of the sun. Our eyes would follow the ray of light backward along the 
new direction and would see the star located farther from the center of the sun than it really was. The effect was very 
small. Even if light just grazed the sun, the shift in a star's position would be only 1.75 seconds of arc, and if the light 
passed farther from the sun, the shift in the star's position would be even less.   
  
     Of course, the light of stars near the sun cannot ordinarily be observed. For a few minutes during the course of a 
total eclipse, however, they can be. At the time the general theory was published, World War I was in progress and 
nothing could be done. In 1919, however, the war was over and a total eclipse was to be visible from the island of 
Principe in the Gulf of Guinea off West Africa. Under British auspices an elaborate expedition was sent to the island 
for the specific purpose of testing the general theory. The positions of the stars in the neighborhood of the sun were 
measured and compared with their positions a half-year later when the sun was in the opposite end of the sky. The 
results confirmed the general theory.   



  
     Finally, Einstein's theory predicted that light would lose energy if it rose against gravity and would gain energy if it 
"fell," just as an ordinary object would. In the case of a moving object such as a ball, this loss of energy would be 
reflected as a loss of velocity. However, light could only move at one velocity; therefore the loss of energy would have 
to be reflected in a declining frequency and increasing wavelength. Thus, light leaving a star would undergo a slight 
"red shift" as it lost energy. The effect was so small, however, that it could not be measured.   
  
     However, stars had just been discovered (white dwarfs) which were incredibly dense and which had gravitational 
fields thousands of times as intense as those of ordinary stars. Light leaving such a star should lose enough energy to 
show a pronounced red shift of its spectral lines. In 1925, the American astronomer Welter Sydney Adams (1876-1956) 
was able to take the spectrum of the white dwarf companion of the star Sirius, and to confirm this prediction.   
  
     The general theory of relativity had thus won three victories in three contests over the old view of gravitation. All, 
however, were astronomical victories. It was not until 1960 that the general theory was brought into the laboratory.   
  
     The key to this laboratory demonstration was discovered in 1958 by the German physicist Rudolf Ludwig 
Mossbauer (1929- ), who showed that under certain conditions a crystal could be made to produce a beam of gamma 
rays' of identical wave-lengths. Gamma rays of such wavelengths can be absorbed by a crystal similar to that, which 
produced it. If the gamma rays are of even slightly different wavelength, they will not be absorbed. This is called the 
Mossbouer effect.   
  
     Now, then, if such a beam of gamma rays is emitted downward so as to "fall" with gravity, it gains energy and its 
wavelength becomes shorter--if the general theory of relativity is correct. In falling just a few hundred feet, it should 
gain enough energy for the decrease in wavelength of the gamma rays, though very minute, to become sufficiently 
large to prevent the crystal from absorbing the beam.   
  
     Furthermore, if the crystal emitting the gamma ray is moved upward while the emission is proceeding the 
wavelength of the gamma ray is increased through the Doppler-Fizeau effect. The velocity at which the crystal is 
moved upward can be adjusted so as to just neutralize the effect of gravitation on the falling gamma ray. The gamma 
ray will then be absorbed by the absorbing crystal. Experiments conducted in 1960 corroborated the general theory of 
relativity with great accuracy, and this was the most impressive demonstration of its validity yet.   
  



     It is not surprising, then, that the relativistic view of the universe is now generally accepted (at least until further 
notice) among physicists of the world.  
  
  

CHAPTER 8 

Quanta 

  
  
Black Body Radiation   
  
     The theory of relativity does not flatly state that an ether does not exist. It does, however, remove the need for one, 
and if it is not needed, why bother with it?   
  
     Thus, the ether was not needed to serve as an absolute standard for motion since relativity began by assuming that 
such an absolute standard did not exist and went on to demonstrate that it was not needed. Again, the ether is not 
needed as a medium to transmit the force of gravity and prevent "action at a distance." If gravity is a matter of the 
geometry of space-time and is not a transmitted force, the possibility of action at a distance does nor arise.   
  
     This still leaves one possible use for the ether--that of serving as a medium for transmitting light waves across a 
vacuum. A second paper written by Einstein in 1905 (in addition to his paper on special relativity) wiped out that 
possibility, too. Einstein’s work on relativity had evolved out of the paradox concerning light that was turned up by the 
Michelson-Morley experiment. Einstein's second paper arose out of a different paradox, also concerning light, that had 
also arisen in the last decades of the nineteenth century. (It was for this second paper that he later received the Nobel 
Prize.)    
  
     This second paradox began with Kirchhoffs work on spectroscopy. He showed that a substance that absorbed certain 
frequencies of light better than others would also emit those frequencies better than others once it was heated to 
incandescence.   
  
     Suppose, then, one imagined a substance capable of absorbing all the light, of all frequencies, that fell upon it. Such 
a body would reflect no light of any frequency and would therefore appear perfectly black. It is natural to call such a 



substance a block body for that reason. If a black body is brought to incandescence, its emission should then be as 
perfect as its absorption, by Kirchhoffs rule. It should emit light in all frequencies, since it absorbs in all frequencies. 
Furthermore, since it absorbs light at each frequency more efficiently than a non-black body would, it must radiate 
more efficiently at each frequency, too.   
  
     Kirchhoffs work served to increase the interest of physicists in the quantitative aspects of radiation, and in the 
manner in which such radiation varied with temperature. It was common knowledge that the total energy radiated by a 
body increased as the temperature increased, but this was made quantitative in 1879 by the Austrian physicist Josef 
Stefan (1835-1893). He showed that the total energy radiated by a body increased as the fourth power of the absolute 

temperature. (The absolute temperature, symbolized as 0K, is equal to the centigrade temperature, 00C, plus 2730)   

  

     Consider a body, for instance, that is maintained at room temperature, 3000K, and is then radiating a certain amount 

of energy. If the temperature is raised to 6000K, which is that of melting lead, the absolute temperature has been 

doubled and the total amount of energy radiated is increased by 24, or 16 times. If the same body is raised to a 

temperature of 60000K, which is that of the surface of the sun, it is at an absolute temperature twenty times as high as it 

was at room temperature, and it radiates 204, or 160,000, times as much energy.   

  
     In 1884, Boltzmann (who helped work out the kinetic theory of gases) gave this finding a firm mathematical 
foundation and showed that it applied, strictly, to black bodies only slid that non-black bodies always radiate less heat 
than Stefan's law would require. Because of his contribution, the relationship is sometimes called the Stefan-Boltzmann 
law.   
  
     But it is not only the total quantity of energy that alters with rising temperature. The nature of the light waves 
emitted also changes, as is, in fact, the common experience of mankind. For objects at the temperature of a steam 

radiator, for instance (less than 4000K), the radiation emitted is in the low frequency infra-red. Your skin absorbs the 
infrared and you feel the radiation as heat, but you see nothing. A radiator in a dark room is invisible.   
  
     As the temperature of an object goes up, it not only radiates more heat, but the frequency of the radiation changes 

somewhat, too. By the time a temperature of 9500K is reached, enough radiation, of a frequency high enough to affect 
the retina, is emitted for the body to appear a dull red in color. As the temperature goes higher still, the red brightens 



and eventually turns first orange and then yellow as more and more of still higher frequencies of light are emitted. At a 

temperature of 20000K, an object, although glowing brightly, is still emitting radiation that is largely in the infrared. It 

is only when the temperature reaches 60000K, the temperature of the surface of the sun, that the emitted radiation is 
chiefly in the visible light region of the spectrum. (Indeed, it is probably because the sun's surface is at that particular 
temperature, that our eyes have evolved in such a fashion as to be sensitive to that particular portion of the spectrum.)   
  
     Toward the end of the nineteenth century, physicists attempted to determine quantitatively the distribution of 
radiation among light of different frequencies at different temperatures. To do this accurately a black body was needed, 
for only then could one be sure that at each frequency all the light possible (for that temperature) was being radiated. 
For a non-black body, certain frequencies were very likely to be radiated in a deficient manner; the exact position of 
these frequencies being dependent on the chemical nature of the radiating body.   
  
     Since no actual body absorbs all the light falling upon it, no actual body is a true black body, and this seemed to 
interpose a serious obstacle in the path of this type of research. In the 1890's, however, a German physicist, Wilhelm 
Wien (1864- 1928), thought of an ingenious way of circumventing this difficulty.   
  
  
     Imagine a furnace with a hole in it. Any light of any wave- length entering that hole would strike a rough inner wall 
and be mostly absorbed. What was not absorbed would be scattered in diffuse reflections that would strike other walls 
and be absorbed there. At each contact with a wall, additional absorption would take place, and only a vanishingly 
small fraction of the light would manage to survive long enough to be reflected out the hole again. That hole, therefore, 
would act as a perfect absorber (with-in reason) and would, therefore, represent a black body. If the furnace were raised 
to a certain temperature and maintained there, then the radiation emitted from that hole is blackbody radiation and its 
frequency distribution can be studied.   
  
     In 1895, Wien made such studies and found that at a given temperature, the energy radiated at given frequencies, 
increased as the frequency was raised, reached a peak, and then began to decrease as the frequency was raised still 
further.   
  
     If Wien raised the temperature, he found that more energy was radiated at every frequency, and that a peak was 
reached again. The new peak, however, was at a higher frequency than the first one. In fact, as he continued to raise the 
temperature, the frequency peak of radiation moved continuously in the direction of higher and higher frequencies. The 



value of the peak frequency v(max) varied directly with the absolute temperature (T), so Wien's law can be expressed 
as follows:  
  
v(max) = k T                   (Equation 8-1)  
  
where k is a proportionality constant.   
  
     Both Stefan's law and Wien's law are of importance in astronomy. From the nature of a star's spectrum, one can 
obtain a measure of its surface temperature. From this one can obtain a notion of the rate at which it is radiating energy 
and, therefore, of its lifetime. The hotter a star, the more short-lived it may be expected to be.   
  
     Wien's law explains the colors of the stars as a function of temperature (rather than as a matter of approach or 

recession as Doppler had thought). Reddish stars are comparatively cool, with surface temperatures of 2000-30000K. 

Orange stars have surface temperatures of 3000-50000K, and yellow stars (like our sun) of 5000-80000K. There are 

also white stars with surface temperatures of 8000-12,0000K and bluish stars that are hotter still.   

  
     Planck's Constant   
  
     At this point the paradox arose, for there remained a puzzle as to just why black-body radiation should be distributed 
in the manner observed by Wien. In the 1890's, physicists assumed that a radiating body could choose at random a 
frequency to radiate in. There are many more small gradations of high-frequency radiation than of low-frequency 
radiation (just as there are many more large integers than small ones), and if radiation could choose any frequency at 
random, many more high frequencies would be chosen than low ones.   
  
     Lord Rayleigh worked out an equation based on the assumption that all frequencies could be radiated with equal 
probability. He found that the amount of energy radiated over a particular range of frequencies should vary as the 
fourth power of the frequency. Sixteen times as much energy should be radiated in the form of violet light as in the 
form of red light, and far more still should be radiated in the ultraviolet. In fact, by Raleigh's formula, virtually all the 
energy of a radiating body should be radiated very rapidly in the far ultraviolet. Some people referred to this as the 
"violet catastrophe."   
  



     The point about the violet catastrophe, however, was that it did not happen. To be sure, at very low frequencies the 
Rayleigh equation held, and the amount of radiation climbed rapidly as the frequency of the radiation increased. But 
soon the amount of radiation began to fall short of the prediction. It reached a peak at some intermediate frequency, a 
peak that was considerably below what the Rayleigh equation predicted for that frequency, and then, at higher 
frequencies still, the amount of radiation rapidly decreased, though the Rayleigh formula predicted a still-continuing 
increase.   
  
     On the other hand, Wien worked up an equation designed to express what was actually observed at high frequencies, 
Unfortunately, it did not account for the distribution of radiation at low frequencies.   
  
     In 1899, a German physicist, Max Karl Ernst Ludwig Planck (1858-1947), began to consider the problem. 
Rayleigh's analysis, it seemed to Planck, was mathematically and logically correct, provided his assumptions were 
accepted; and since Rayieigh's equation did not fit the facts, it was necessary to question the assumptions. What if all 
frequencies were not, after all, radiated with equal probability? Since the equal-probability assumption required that 
more and more light of higher and higher frequency be radiated, whereas the reverse was observed, Planck proposed 
that the probability of radiation decreased as frequency increased.   
  
     Thus, there would be two effects governing the distribution of black-body radiation. First was the undeniable fact 
that there were more high frequencies than low frequencies so that there would be a tendency to radiate more high-
frequency light than low-frequency light. Second, since the probability of radiation decreased as frequency went up, 
there would be a tendency to radiate less in the high-frequency range.     
  
     At very low frequencies, where the probability of radiation is quite high, the first effect is dominant and radiation 
increases as frequency rises, in accordance with the Rayleigh formula. However, as frequency continues to rise, the 
second effect becomes more and more important. The greater number of high frequencies is more than balanced by the 
lesser probability of radiating at such high frequency. The amount of radiation begins to climb more slowly as 
frequency continues to rise, reaches a peak, and then begins to decline.   
  
     Suppose the temperature is raised. This will not change the first effect, for the fact that there are more high 
frequencies than low frequencies is unalterable. However, what if a rise in temperature increased the probability that 
high-frequency light could be radiated? The second effect would therefore be weakened. In that case, radiation (at a 
higher temperature) could continue to increase, with higher frequencies, for a longer time before it was overtaken and 



repressed by the weakened second effect. The peak radiation consequently would move into higher and higher 
frequencies as the temperature went up. This was exactly what Wien had observed.   
  
     But how account for the fact that the probability of radiation decreased as frequency increased? Planck made the 
assumption that energy did not flow continuously (something physicists had always taken for granted) but was given 
off in discrete quantities. In other words, Planck imagined that there were "atoms of energy" and that a radiating body 
could give off one atom of energy or two atoms of energy, but never one and a half atoms of energy or, indeed, 
anything but an integral number of such entities. Furthermore, Planck went on to suppose, the energy content of such 
an atom of energy must vary directly with the frequency of the light in which it was radiated.   
  
     Planck called these atoms of energy, quanta (singular, quantum) from a Latin word meaning "how much?" since the 
size of the quanta was a crucial question.   
  
     Consider the consequences of this quantum theory. Violet light, with twice the frequency of red light, would have to 
radiate in quanta twice the size of those of red light. Nor could a quantum of violet light be radiated until enough 
energy had been accumulated to make up a full quantum, for less than a full quantum could not, by Planck's 
assumptions, be radiated. The probability, however, was that before the energy required to make up a full quantum of 
violet light was accumulated, some of it would have been bled off to form the half-sized quantum of red light. The 
higher the frequency of light, the less the probability that enough energy would accumulate to form a complete 
quantum without being bled off to form quanta of lesser energy content and lower frequency. This would explain why 
the "violet catastrophe" did not happen and why, in actual fact, light was radiated chiefly at low frequencies and more 
slowly than one might expect, too.   
  
     As the temperature rose, the general amount of energy available for radiation would increase as the fourth power of 
the absolute temperature. Under this increasing flood of radiation, it would become more and more likely that quanta of 
high-frequency light might have time to be formed. Thus, as Planck assumed, the probability of radiation in the high 

frequencies would increase, and the radiation peak would advance into higher frequencies. At temperatures of 60000K, 
the peak would be in the visible light region, though the still larger quanta of ultraviolet would be formed in minor 
quantities even then.   
  
     If the energy content (e) of a quantum of radiation is proportional to the frequency of that radiation (v) we can say 
that:  



  
e = hv                                      (Equation 8-2)  
  
where h is a proportionality constant, commonly called Planck’s constant. If we solve Equation 8-2 for h, we find that h 
= E/v. Since the units of e in the cgs system are "ergs" and those of v are “1/seconds," the units of h are "ergs" divided 
by "1/seconds," or "erg-seconds." Energy multiplied by time is considered by physicists to be action. Planck's constant, 
therefore, may be said to be measured in units of action.   
  
     Planck derived an equation containing h - that, he found, would describe the distribution of black-body radiation, as 
actually observed, over the entire range of frequencies. At least, it did this if h were given an appropriate, very small 

value. The best currently-accepted value of h is 0.00000000000000000000000000066256 erg-seconds or 6.6256 X 10-

27ergs-seconds.   

  
     To see what this means, consider that orange light of wavelength 6000 A has a frequency of 

50,000.000,000,000.000, or 5 X 1016 cycles per second, if this is multiplied by Planck's constant, we find that the 

energy content of a quantum of this orange light is 5 X1016 X 6.6256 X 10-27, or about 3.3 X 10-10 ergs. This is only 
about a third of a billionth of an erg, and an erg itself is but a small unit of energy.   
  
     It is no wonder, then, that individual quanta of radiant energy were not casually observed before the days of Planck. 
Planck's quantum theory, announced in 1900, proved to be a water shed in the history of physics. All physical theory 
that did take quanta into account, but assumed energy to be continuous is sometimes lumped together as classical 
physics, whereas physical theory that does take quanta into effect is modern physics, with 1900 as the convenient 
dividing point.  
  
   Yet Plank’s theory, when first announced, created little stir. Plank himself did nothing with it at first but explain the 
distribution of black body radiation, and physicists were not ready to accept so radical  a change of view of energy just 
to achieve that one victory. Planck himself was dubious and at times tried to draw his quantum theory as close as 
possible to classical notions by supposing that energy was in quanta form only when radiated and that it might be 
absorbed continuously.  
  
    And yet (with the wisdom of hindsight) we can see that quanta helped explain a number of facts about absorption of 



light that classical physics could not. In Planck's time, it was well known that violet light was much more efficient than 
red light in bringing about chemical reactions, and that ultraviolet light was more efficient still.  Photography was an 
excellent example of this, for photographic film of the type used in the nineteenth century was very sensitive to the 
violet end of the spectrum and rather insensitive to the red end. In fact, ultraviolet light had been discovered a century 
before Planck through its pronounced effect on silver nitrate. Was it not reasonable to suppose that the large quanta of 
ultraviolet light could produce chemical reactions with greater ease than the small quanta of red light? And could not 
one say that this would only explain the facts it were assumed that energy was absorbed only in whole quanta? 
  
   This argument was not used to establish the quantum theory in connection with absorption, however. Instead, 
Einstein made use of a very similar argument in connection with a much more recently discovered and an even more 
dramatic phenomenon.   
  
     The Photoelectric Effect  
  
In the last two decades of the nineteenth century, it had been discovered that some metals behave as though they were 
giving off electricity under the influence of light. At that time, physicists were beginning to understand that electricity 
was associated with the movement of subatomic particles called electrons and that the effect of light was to bring about 
the ejection of electrons from metal surfaces. This is the photoelectric effect. 
  
On closer study, the photoelectric effect became a prime puzzle. It seemed fair to assume that under ordinary conditions 
the electrons were bound to the structure of the metal and that a certain amount of energy was required to break this 
bond and set the electrons tree. Furthermore, it seemed that as light was made more and more intense, more and more 
energy could be transferred to the metal surface. Not only would the electrons then be set free, but considerable kinetic 
energy would be available to them, so they would dart off at great velocities. The more intense the light, the greater the 
velocities. Nor did it seem that the frequency of the light ought to have anything to do with it; only the total energy 
carried by the light, whatever its intensity.   
  
     So it seemed, but that is not what happened.   
  
     The German physicist Philipp Lenard (1862-1947), after careful studies in 1902, found that for each surface that 
showed the photoelectric effect, there was a limiting threshold frequency above which, and only above which, the 
effect was to be observed.   



  
     Let us suppose, for instance, that this threshold frequency for a particular surface is 500 quadrillion cycles per 
second (the frequency of orange light of wavelength 6000 A). If light of lower frequency, such as red light of 420 
quadrillion cycles per second is allowed to fall upon the surface, nothing happens. No electrons are ejected. It doesn't 
matter how bright and intense the red light is and how much energy it carries; no electrons are ejected.   
  
     As soon, however, as the light frequency rises to 500 quadrillion cycles per second, electrons begin to be ejected, 
but with virtually no kinetic energy. It is as though the energy they have received from the light is just sufficient to 
break the bond holding them to the surface, but not sufficient to supply them with any kinetic energy in addition. 
Lenard found that increasing the intensity of the light at this threshold frequency did nothing to supply the electrons 
with additional kinetic energy. As a result of the increased intensity, more electrons were emitted from the surface, the 
number being in proportion to the energy of the orange light, but all of them lacked kinetic energy.   
  
     If the frequency were increased still further and if violet light of 1000 quadrillion cycles per second were used, 
electrons would be emitted with considerable kinetic energy. The number emitted would vary with the total energy of 
the light, but again all would have the same kinetic energy.   
  
     In other words, a feeble violet light would bring about the emission of a few high-energy electrons; an intense orange 
light would bring about the emission of many low-energy electrons; and an extremely intense red light would bring about 
the emission of no electrons at all.   
  
     The physical theories of the nineteenth century could not account for this, but in 1905 Einstein advanced an 
explanation that made use of Planck's quantum theory, which was now five years old but still very much neglected.   
  
     Einstein assumed that light was not only radiated in quanta, as Planck had maintained, but that it was absorbed in 
quanta also. When light fell upon a surface, the electrons bound to the surface absorbed the energy one quantum at a 
time. If the energy of that quantum was sufficient to overcome the forces holding it to the surface, it was set free-
otherwise not.   
  
     If course, an electron might conceivably gain enough energy to break loose after absorbing a second quantum even 
if the first quantum had been insufficient. This, however, is an unlikely phenomenon. The chances are enormous that 
before it can absorb a second quantum, it will have radiated the first one away. Consequently, one quantum would have 



to do the job by itself; if not, merely multiplying the number of quantum’s (which remain individually insufficient) 
would not do the job. To use an analogy, if a man is not strong enough to lift a boulder single-handed, it doesn't matter 
if one million men, each as strong as the fiat, try one after the other to lift it single-handed. The boulder will not budge.   
  
     The size of the quantum, however, increases as frequency in- creases. At the threshold frequency, the quantum is 
just large enough to overcome the electron bond to a particular surface. As the frequency (and the energy content of the 
quantum) increase further, more and more energy will be left over, after breaking the electron bond, to be applied as 
kinetic energy.   
  
     For each substance, there will be a different and characteristic threshold energy depending on how strongly the 
electrons are bound to their substance. For a metal like cesium, where electrons are bound very weakly, the threshold 
frequency is in the infrared. Even the small quanta of infrared supply sufficient energy to break that weak bond. For a 
metal like silver, where electrons are held more strongly, the threshold frequency is in the ultraviolet. Einstein 
suggested, then, the following relationship: 
  

½ mv2 = hv - w                         (Equation 8-2)  

  

where 1/2mv2 is the kinetic energy of the emitted electron; hv (Planck's constant times frequency) the energy content of 
the quanta being absorbed by the surface; and w the energy required to break the electron free. At the threshold 
frequency, electrons would barely be released and would possess no kinetic energy. For that reason, Equation 8-2 
would become 0 = hv  - w; and this would mean that 
 hv = w. In other words, w would represent the energy of the light quanta at threshold frequency.   
  
     Einstein's explanation of the photoelectric effect was so elegant, and fit the observations so well, that the quantum 
theory sprang suddenly into prominence. It had been evolved, originally, to explain the facts of radiation, and now, 
without modification, it was suddenly found to explain the photoelectric effect, a completely different phenomenon. 
This was most impressive.   
  
     It became even more impressive when in 1916 the American physicist Robert Andrews Millikan (1868-1953) 
carried out careful experiments in which he measured the energy of the electrons emitted by light of different frequency 
and found that the energies he measured fit Einstein's equation closely. Furthermore, by measuring the energy of the 



electrons (1/2mv2), the frequency of the light he used (v), and the threshold frequency for the surface he was using (w), 
he was able to calculate the value of h (Planck's constant) from Equation 8-2. He obtained a value very close to that 
which Planck had obtained from his radiation equation.   
  
     Since 1916, then, the quantum theory has been universally accepted by physicists. It is now the general assumption 
that energy can be radiated or absorbed only in whole numbers of quanta and, indeed, that energy in all its forms is 
"quantized"--that is, can only be considered as behaving as though it were made up of indivisible quanta. This concept 
has offered the most useful views of atomic structure so far, as we shall see in Volume III of this book.   
  
     Photons   
  
     Einstein carried the notion of energy quanta to its logical conclusion. A quantum seemed to be analogous to an 
"atom of energy" or a "particle of energy," so why not consider such particles to be particles? Light, then, would consist 
of particles, which were eventually called photons from the Greek for "light".   
  
     This notion came as a shock to physicists. The wave theory of light had been established just a hundred years before 
and for a full century had been winning victory after victory, until Newton's particle theory had been ground into what 
had seemed complete oblivion. If light consisted of particles after all, what was to be done with all the evidence that 
pointed incontrovertibly to waves? What was to be done with interference experiments, polarization experiments, and 
so on?   
  
     The answer is that nothing has to be done to them. It is simply wrong to think that an object must be either a particle 
or a wave. You might just as well argue that either we are head-down and an Australian head-up, or we are head-up and 
an Australian head-down. A photon is both a particle and a wave, depending on the point of view. (Some physicists, 
half-jokingly, speak of “wavicles.") In fact, one can be more general than that (as I shall further explain in Volume III 
of this book) and insist that all the fundamental units of the universe are both particles and waves.  
  
     It is hard for a statement like that to sink in, for the almost inevitable response is: "But how can an object be both a 
particle and a wave at the same time?"   
  
     The trouble here is that we automatically try to think of unfamiliar objects in terms of familiar ones; we describe 
new phenomena by saying something such as "An atom is like a billiard ball" or "Light waves are like water waves." 



But this really means only that certain prominent properties of atoms or light waves resemble certain prominent 
properties of billiard balls or water waves. Not all properties correspond: an atom isn't as large as a billiard ball; a light 
wave isn't as wet as a water wave.   
  
     A billiard ball has both particle and wave properties. However, the particle properties are so prominent and the wave 
properties so obscure and undetectable that we think of a billiard ball as a particle only. The water wave is also both 
wave and particle, but here it is the wave properties that are prominent and the particle properties that are obscure. In 
fact, all ordinary objects are extremely unbalanced in that respect, so we have come to assume that an object must be 
either a particle or a wave.   
  
     The photons of which light is made up happen to be in better balance in this respect, with both wave properties and 
particle properties quite prominent. There is nothing in ordinary experience among particles and waves to which this 
can be compared. However, just because we happen to be at a loss for a familiar analogy, we need not think that a 
wave-particle is "against common sense" or "paradoxical" or, worse still, that "scientists cannot make up their minds."   
  
     We may see this more clearly if we consider an indirect analogy. Imagine a cone constructed of some rigid solid 
such as steel. If you hold such a cone point-upward, level with the eye, you will see its boundary to be a triangle. 
Holding it in that orientation (point-up), you will be able to pass it through a closely-fitting triangular opening in a 
sheet of steel, but not through a circular opening of the same area.   
  
     Next imagine the cone held point toward you and at eye-level. Now you see its boundary to be that of a circle. In 
that orientation it will pass through a closely-fitting circular opening in a sheet of steel, but not through a triangular 
opening of the same area.   
  
     If two observers, who were familiar with two-dimensional plane geometry but not with three-dimensional solid 
geometry, were conducting such experiments, one might hotly insist that the cone was triangular since it could pass 
through a triangular hole that just fit; the other might insist, just as hotly, that it was a; circle, since it could pass 
through a circular hole that just fit. They might argue thus throughout all eternity and come to not conclusion.   
  
     It the two observers were told that both were partly wrong and both partly right and that the object in question had 
both) triangular and circular properties, the first reaction (based on two-dimensional experience) might be an outraged, 
"How can an object be both a circle and a triangle?"   



  
     However, it is not that a cone is a circle and a triangle, but that it has both circular and triangular cross sections, 
which means that some of its properties are like those of circles and some' are like those of triangles.   
  
     In the same way, photons are in some aspects wave-like and, in others particle-like. The wave-like properties so 
beautifully demonstrated through the nineteenth century were the result of experiments that served to catch light in its 
wave-aspect (like orienting the cone properly in order to show it to be a triangle).   
  
     The particle-like properties were not so easily demonstrated. In 1901, to be sure, the Russian physicist Peter 
Nikolaevich Lebedev (1866-1911) demonstrated the fact that light could exert a very slight pressure. A mirror 
suspended in a vacuum by a thin fiber would react to this pressure by turning, and twisting the fiber. From the slight 
twist that resulted when a light beam shone on the mirror, the pressure could be measured.   
  
     Under some conditions, Lebedev pointed out, radiation pressure could become more important than gravitation. The 
frozen gases making up the surface of a comet evaporate as the comet approaches the sun, and the dust particles 
ordinarily held in place by the frozen gas are liberated. These particles are subjected to the comet's insignificant 
gravitational force and also to the pres- sure of the sun's tremendous radiation. The unusually large radiation pressure is 
greater than the unusually weak gravitation, and the dust particles are swept away (in part) by the radiation that is 
streaming outward in all directions from the sun.   
  
     It is this that causes a comet's tail, consisting as it does of light reflected from these dust particles, to be always on 
the side away from the sun. Thus, a comet receding from the sun is preceded by its tail. This orientation of the comet's 
tail caused the German astronomer Johannes Kepler (1571-1630) to speculate on the existence of radiation pressure 
three centuries before that existence could be demonstrated in the laboratory.   
  
     The existence of radiation pressure might ordinarily serve as an example of the particle properties of light, since we 
tend to think of such pressure as resulting from the bombardment of particles as in the case of gas pressure. However, 
in 1873, Maxwell (who had also worked on the kinetic theory of gases) had shown that there were good theoretical 
arguments in favor of the fact that light waves might, as waves and not as particles, exert radiation pressure.   
  
     A more clear-cut example of particle-like properties was advanced in 1922 by the American physicist Arthur Holly 
Compton (1892-1962). He found that in penetrating matter an X-ray (a very high-frequency form of light, to be 



discussed in some detail in Volume III of this book) sometimes struck electrons and not only exerted pressure in doing 
so, but was itself dc8ectedl In being deflected, the frequency decreased slightly, which meant that the X ray had lost 
energy. The electron, on the other hand, re-coiled in such a direction as to account for the detection of the X ray, and 
gained energy just equal to that lost by the X ray. This deflection and energy-transfer was quite analogous to what 
would have happened if an electron had hit an electron or, for that matter, if a billiard ball had hit a billiard ball. It 
could not, be readily explained by the wave theory. The Compton effect clearly demonstrated that an X ray photon 
could act as a particle. There were good reasons for supposing that the more energetic a photon, the more prominent its 
particle properties were compared to its wave properties. Therefore, the Compton effect was more easily demonstrated 
for an X ray photon than for the much less energetic photons of visible light, but the result was taken to hold for all 
photons. The particle-wave nature of photons has not been questioned since.   
  
     Whereas some experiments illuminate the wave properties of light and some demonstrate its particle properties, no 
experiment has ever been designed which shows light behaving as both a wave and a particle simultaneously. (In the 
same way, a cone may be oriented so as to pass through a triangle, or so as to pass through a circle, but not in such a 
fashion as to pass through both.) The Danish physicist Niels Bohr (1865-1962) maintained that to design an experiment 
showing light to behave as both a wave and particle simultaneously not only has not been done but cannot be done in 
principle. This is called the principle of complententarity.   
  
     This is not really frustrating to scientists, though it sounds so. We are used to determining the overall shape of a 
solid object by studying it first from one side and then from another, and then combining, in imagination, the 
information so gathered. It does not usually occur to us to sigh at the fact that we cannot see an object from all sides 
simultaneously, or to imagine that only by such an all-sides at once view could we truly understand the object's shape. 
In fact, could we see all sides simultaneously, we might well be confused rather than enlightened, as when we first see 
a Picasso portrait intended to show a woman both full-face and profile at the same time.   
  
     If light is considered as having the properties of both a particle and a wave, there is certainly no need of a 
luminferous ether, any more than we need an ether for gravitation or as a standard for absolute motion.   
  
     However much light may seem to be a waveform, in its transmission across a vacuum, it is the particle properties 
that are prominent. The photons stream across endless reaches of vacuum just as Newton had once envisaged his own 
less sophisticated particles to be doing.   
  



     Consequently, once relativity and quantum theory both came into general acceptance-say, by 1920--physicists 
ceased to be concerned with the ether.   
  
     Yet even if we consider light to consist of photons, it remains true that the photons have a wave aspect--that 
something is still waving. What is it that is waving, and is it anything material at all?   
  
     To answer that, let's take up the remaining two phenomena that, since ancient times, have been examples of what 
seemed to be action at a distance. It will take several chapters to do so, but the answer will eventually be reached.  
  
  
  
  
  

Chapter 9 

  

Magnetism 

  
     Magnetic Poles   
  
     Forces of attraction between bodies have undoubtedly been observed since prehistoric times, but (according to 
tradition, at least) the first of the ancient Greeks to study the attractive forces systematically was Thales (640?-546 
B.C.).   
  
     One attractive force in particular seemed to involve iron and iron ore. Certain naturally occurring types of iron ore 
(“Load- stone") were found to attract iron and, as nearly as the ancients could tell, nothing else. Thales lived in the 
town of Miletus (on the Aegean coast of what is now Turkey) and the sample of iron ore that he studied purportedly 
came from the neighborhood of the nearby town of Magnesia. Thales called it "no magnetes lithos" ("the Magnesian 
rock") and such iron-attracting materials are now called magnets, in consequence, while the phenomenon itself is 
magnetism.   
  
     Thales discovered that amber (a fossilized resin called "elektron" by the Greeks), when rubbed, also exhibited an 



attractive force. This was different from the magnetic force, for whereas magnetism seemed limited to iron, rubbed 
amber would attract any light object: fluff, feather, bits of dried leaves. In later centuries, objects other than amber were 
found to display this property when rubbed, and in 1600 the English physician and physicist William Gilbert (1540-
1603) suggested that all such objects be called "electrics" (from the Greek word for amber). From this, eventually, the 
word electricity came to be applied to the phenomenon.   
  
     Magnetism, while the more restricted force, seemed under the experimental conditions that prevailed in ancient and 
medieval times to be far the stronger. It was magnetism; therefore, that was the more thoroughly investigated in the two 
thousand years following Thales.   
  
     It was learned, for instance, that the property of magnetism could be transferred. If a sliver of steel is stroked with 
the naturally occurring magnetic iron ore, it becomes a magnet in its own right and can attract pieces of iron though 
previously it had not been able to do so.   
  
     Furthermore, if such a magnetized needle was placed on a piece of cork and set to floating on water, or if it was 
pivoted on an axis so that it might freely turn, it was discovered that the needle did not take any position at random, but 
oriented itself in a specific direction. That direction closely approximates the north-south line. Then, too, it one marks 
one end of the magnetized needle in some way, as by a notch or a small droplet of paint, it becomes quickly apparent 
that it is always the same end that points north, while the other end always points south.   
  
     Because the ends of the magnetized needle pointed, so it seemed, to the poles of the earth, it became customary to 
speak of the end that pointed north as the north pole of the magnet, and of the other the south pole of the magnet.   
  
     It was bound to occur to men that if the north pale of a magnetized needle could really be relied upon to pivot in 
such a way as always to point north, an unexcelled method of finding direction was at hand. Until then, the position of 
the North Star by night and the position of the sun by day had been used but neither would serve except in reasonably 
clear weather.   
  
     The Chinese were supposed to have made use of the magnetized needle as a direction finder in making their way 
across the trackless vastness of Central Asia. However, the first uses of the needle in ocean voyages are recorded 
among Europeans of the twelfth century. The needle was eventually mounted on a card on which the various directions 
were marked off about the rim of a circle. Since the directions encompassed the rim of the card, the magnetized needle 



came to be called a compass.   
  
     There is no doubt that the compass is one of those simple inventions that change the world. Men could cross wide 
tracts of Ocean without a compass (some two thousand years ago the Polynesians colonized the islands that dotted the 
Pacific Ocean without the help of one), but a compass certainly helps. It is probably no accident that it was only after 
the invention of the compass that European seamen flung themselves boldly out into the Atlantic Ocean, and the "Age 
of Exploration" began.   
  
     The poles of a magnet are distinguished by being the points at which iron is attracted most strongly. If a magnetized 
needle is dipped into iron filings and then lifted free, the filings will cluster most thickly about the ends. In this sense, a 
magnet of whatever shape has poles that can be located in this manner. Nor do poles occur singly. Whenever a north 
pole can be located, a south pole can be located, too, and vice versa.   
  
     Nor is it difficult to tell which pole is the north and which the south, even without directly making a compass of the 
magnet. Suppose that two magnetized needles have been allowed to orient themselves north-south and that the north 
pole of each I identified. If the north pole of one magnet is brought near the south pole of the second magnet, the two 
poles will exhibit a mutual attraction, and if allowed to touch will remain touching. It will take force to separate them.   
  
     On the other hand, it the north pole of one magnet is brought near the north pole of the other, there will be a mutual 
repulsion. The same is true if the south pole of one is brought near the south pole of the other. If the magnets are free to 
pivot about, they will veer away and spontaneously reorient themselves so that the north pole of one faces the south 
pole of the other. If North Pole is forced against north pole or south pole against south pole, there will be a separation 
as soon as the magnets are released. It takes force to keep them in contact.   
  
     We might summarize this by saying: Like poles repel unlike poles attract.   
  
     Once the north pole of a particular magnet has been identified, then, it can be used to identify the poles of any other 
magnet. Any pole to which it is attracted is a south pole. Any pole by which it is repelled is a north pole. This was first 
made clear as long ago as 1269 by one of the few experimentalists of the Middle Ages, the Frenchman Peter 
Peregrinus.   
  
      (In view of this, it might have been better if the north poles of magnets, attracted as they are in the direction of the 



North Pole, had been called south poles. However, it is too late to do anything about that now.)    
  
     It is easy to see that the force exerted by a magnetic pole varies inversely with difference. If one allows a north pole 
to approach a south pole, one can feel the force of attraction grow stronger. Similarly, if one pushes a north pole near 
another north pole, one can feel the force of repulsion grow stronger. The smaller the distance, the greater the force.   
  
     Of course, we cannot speak of a north pole by itself and a south pole by itself. Every north pole is accompanied by 
its south pole. Therefore, if a north pole of Magnet A is attracting the south pole of Magnet B, the south pole of Magnet 
A must be simultaneously repelling the south pole of Magnet B. This tends to complicate the situation.   
  
     If one uses long, thin magnets, however, this source of complication is minimized. The north pole of Magnet A is 
close to the south pole of Magnet B, while the south pole of Magnet A (at the other end of a long piece of metal) is 
considerably farther away. The south pole's confusing repulsive force is weakened because of this extra distance and 
may be the more safely ignored.   
  
     In 1785, the French physicist Charles Augustin de Coulomb (1736 - 1806) measured the force between magnetic 
poles at varying distances, using a delicate torsion balance for the purpose. Thus, if one magnetic needle is suspended 
by a thin fiber, the attraction (or repulsion) of another magnet upon one of the poles of the suspended needle will force 
that suspended needle to turn slightly. In doing so, it will twist the fiber by which it is suspended. The fiber resists 
further twisting by an amount that depends on how much it has already been twisted. A given force will always 
produce a given amount of twist, and from that amount of twist the size of an unknown force can be calculated. (Fifteen 
years later. Cavendish used such a balance to measure weak gravitational forces, a century later still; Lebedev used one 
to detect radiation pressure.)   
  
     On making his measurements, Coulomb found that magnetic force varied inversely as the square of the distance, as 
in the case of gravitation. That is, the strength of the magnetic force fell to one-fourth its value when the distance was 
increased twofold, and the force increased to nine times its value when the distance was decreased to one-third its 
previous value. This held true whether the force was one of attraction or repulsion.   
  
     This can be expressed mathematically as follows: If the magnetic force between the poles is called F, the, strength of 
the two poles, m and m', and the distance between the two poles, d, then: 
  



F =  mm' / d2                                                                                                       (Equation 9-1)   

  
     If the distance is measured in centimeters, then the force is determined in dynes (where 1 dyne is defined as 1 gram-
centimeter per second per second). Suppose, then, that two poles of equal intensity are separated by a distance of 1 
centimeter and that the force of magnetic attraction equals 1 dyne. It turns out then that m = m', and therefore, mm' = 

m2. Then, since both F and d have been set equal to 1, it follows from Equation 9-1 that under those conditions m2 = 1 
and, therefore, m = 1.   
  
     Consequently, one speaks of unit poles as representing poles of such strength that on being separated by 1 
centimeter they exert a magnetic force (of either attraction or repulsion) of 1 dyne. In Equation 9-1, where F is 
measured in dynes and d in centimeters, m and m' are measured in unit poles.   
  
     If a magnetic pole of 5 unit poles exerts a force of 10 dynes on a unit pole at a certain point, the intensity of the 
magnetic force is 2 dynes per unit pole. One dyne per unit pole is defined as 1 oersted (in honor of the Danish physicist 
Hans Christian Oersted, whose contribution to the study of magnetism will be discussed). The oersted is a measure of 
magnetic force per unit pole or magnetic intensity, which is usually symbolized as H. We can say, then, that  
  
H = F/m, or: F = mH                    (Equation 9-2)  
  
where F is magnetic force measured in dynes, m is magnetic strength in unit poles, and H is magnetic intensity in 
oersteds.   
  
     Magnetic Domains   
  
     In the existence of both north and south poles, and in the consequent existence of magnetic repulsion as well as 
magnetic attraction, there is a key difference between magnetism and gravitation. The gravitational force is entirely one 
of attraction, and no corresponding force of gravitational repulsion has yet been discovered.   
  
     For that reason, gravitational force is always at its ideal maximum without the existence of any neutralizing effects. 
A body possessing the mass of the earth will exert a fixed gravitational attraction whatever its temperature or chemical 
constitution. On the other hand, magnetic attraction can always be neutralized to a greater or lesser extent by magnetic 
repulsion, so magnetic effects will occur only in certain kinds of matter and then in widely varying strengths.   



  
     One might suppose (and, as we shall see in Volume III of this book, the supposition is correct) that magnetism is 
widespread in nature and that magnetic forces exist in all matter. Matter might then be considered to consist of 
submicroscopic magnets. A point in favor of this view (at least in the case of iron and steel) is the fact, discovered 
early, that if a long magnetic needle is broken in two, both halves are magnets. The broken end opposite the original 
north pole becomes a south pole; the broken end opposite the original south pole becomes a north pole. This is repeated 
when each half is broken again and again. It is easy to imagine the original needle broken into submicroscopic lengths. 
Each of which is a tiny magnet, each with a north pole and south pole.  
  
     These submicroscopic magnets, in most substances and most conditions, would be oriented randomly, so there is 
littler or no concentration of north poles (or south poles) in any one direction and therefore little or no detectable 
overall magnetic, forte. In some naturally occurring substances, however, there would be a tendency for the 
submicroscopic magnets to line up, at least to a certain extent, along the north-south line. There, would then be a 
concentration of north poles in one direction and of south poles in the other; enough of a concentration to give rise to 
detectable magnetic force.   
  
     If, let us say, the north pole of such a magnet is brought near iron, the submicroscopic magnets in the iron are 
oriented in such a way that the south poles face the magnet and the north poles face away. The iron and the magnet then 
attract each other. If it is the south pole of the magnet that is brought near the iron, then the sub-microscopic magnets in 
the iron are oriented in the opposite fashion, and again there is attraction. Either pole of a magnet will, for that reason, 
attract iron. While the iron is near the magnet or in contact with it so that its own magnetic components are oriented, it 
is itself a magnet. The process whereby iron is made a magnet by the nearness of another magnet is magnetic induction. 
Thus, a paper clip suspended from a magnet will itself attract a second paper clip which will attract a third, and so on. If 
the magnet is removed, all the paper clips fall apart.   
  
     Ordinarily, the submicroscopic magnets in iron are oriented with comparative ease under the influence of a magnet 
and are disoriented with equal ease when the magnet is removed. Iron usually forms a temporary magnet. If a sliver of 
steel is subjected to the action of a magnet, however, the submicroscopic magnets within the steel are oriented only 
with considerably greater difficulty. Once the magnet is removed from the steel, however, the disorientation is equally 
difficult - difficult enough not to take place under ordinary conditions, in fact; therefore, steel generally remains a 
permanent magnet.   
  



     Nor is it iron only that is composed of submicroscopic magnets, for it is not only iron that is attracted to a magnet. 
Other metals, such as cobalt and nickel (which are chemically related to iron) and gadolinium (which is not) are 
attracted by a magnet. So are a number of metal alloys, some of which contain iron and some of which do not. Thus, 
Alnico, which as the name implies is made up of aluminum, nickel and cobalt (plus a little copper), can be used to 
make more powerful magnets than those of steel. On the other hand, stainless steel, which is nearly three-fourths iron, 
is not affected by a magnet.   
  
     Nor need the magnetic substance be a metal. Loadstone itself is a variety of iron oxide, an earthy rather than a 
metallic substance. Since World War II, a whole new class of magnetic substances have been studied. These are the 
ferrites, which are mixed oxides of iron and of other metals such as cobalt or manganese.   
  
     A material that displays, or that can be made to display, a strong magnetic force of the sort we are accustomed to in 
an ordinary magnet is said to be ferromagnetic. (This is from the Latin "ferrum" meaning "iron," since iron is the best-
known example of such a substance.) Nickel, cobalt, Alnico, and, of course, iron and steel are examples of 
ferromagnetic substances.   
  
     The question arises, though, why some materials ate ferro-magnetic and some are not. If magnetic forces are a 
common property of all matter (as they are), why cannot the submicroscopic magnets of pure copper or pure aluminum, 
for instance, be stroked into alignment by an already-existing magnet? Apparently, this alignment cannot be imposed 
from outside unless the substance itself cooperates, so to speak.   
  
     In ferromagnetic substances (but only under appropriate conditions even in those) there is already a gnat deal of 
alignment existing in a state of nature. The submicroscopic magnets tend to orient themselves in parallel fashion by the 
billions of billions, producing concentrations of north and south poles here and there within the iron. The regions over 
which magnetic forces are thus concentrated are called magnetic domains.    
  
     Iron and other ferromagnetic substances are made up of such magnetic domains, each of which is actually on the 
border of visibility. A finely divided powder of magnetic iron oxide spread over iron will tend to collect on the 
boundaries between adjacent domains and make them visible to the eye.   
  
     Despite the existence of these domains, iron as ordinarily produced is not magnetic. That is because the domains 
themselves are oriented in random fashion so that the magnetic force of one is neutralized by those of its neighbors. 



Therefore, stroking with an ordinary magnet does not orient the submicroscopic magnets themselves (this is beyond its 
power); it merely orients the domains. Thus, the ferromagnetic material has itself done almost all the work of alignment 
to begin with, and man proceeds to add one final touch of alignment, insignificant in comparison to that which is 
already done, in order to produce a magnet.   
  
     If a ferromagnetic substance is ground into particles smaller than th2 individual domains making it up, each particle 
will tend to consist of a single domain, or of part of one. The submicroscopic magnets within each will be completely 
aligned. If such a powder is suspended in liquid plastic, the domains can be aligned by the influence of a magnet easily 
and thoroughly by bodily rotation of the particles against the small resistance of the liquid- (rather than against the 
much greater resistance of the iron itself in the solid state). By allowing the plastic to solidify while the system is still 
under the influence of the magnet, the domains will be permanently aligned, and particularly strong magnets will have 
been formed. Furthermore, such magnets can be prepared in any shape and can be easily machined into other shapes.   
  
     Anything, which tends to disrupt the alignment of the do- mains will weaken or destroy the magnetic force of even a 
"permanent" magnet. Two magnets laid parallel, north pole to north pole and south pole to south pole, will, through 
magnetic repulsion, slowly turn the domains away, ruining the alignment and weaking the magnetic force. (That is why 
magnets should always be stacked north-to-south.) From a more mechanical standpoint, it a magnet is beaten with a 
hammer, the vibration will disrupt alignment and weaken the magnetic force.   
  
     In particular, increased atomic vibration, caused by a rise in temperature, will disrupt the domains. In fact, for every 
ferromagnetic substance there is a characteristic temperature above which the alignment of the domains is completely 
disrupted and above which, therefore, the substance will show no ferromagnetic properties. 
  
    This was first demonstrated by the French physicist Pierre Curie (1859-1906) in 1895, and is therefore called the 
Curie point The Curie point is usually below the melting point of a substance, so liquids are generally not 

ferromagnetic. The Curie point for iron, for instance, is 7600C whereas its melting point is 15390C. For cobalt the 

Curie point is considerably higher, 11300C, while for gadolinium it is considerably lower, 160C. Gadoliniun is only 
ferromagnetic at temperatures below room temperature. The Curie point may be located at very low temperatures 

indeed. For the metal dysprosiun, its value is about -1880C (850K), so it is only at liquid air temperatures that 
dysprosium forms domains and becomes ferromagnetic.   
  



     In some substances, the submicroscopic magnets spontaneously align themselves--but not with north poles pointing 
all in the same direction. Rather, the magnets are aligned in parallel fashion but with north poles pointing in one 
direction in half the Cases and in the other direction in the remainder. Such substances are anti-ferromognetic, and 
because the magnetic forces of one type of alignment are neutralized by those of the other, the overall magnetic force is 
zero. It may be, however, that the structure of the substance is such that the magnets with north poles pointing in one 
direction are distinctly stronger than those with north poles pointing in the other. In this case, there is a considerable 
residual magnetic force, and such substances are called ferrimagnetic. (Note the difference in the vowel.)  
  
      The ferrites are examples of ferrimagnetic materials. Naturally, a ferrimagnetic material cannot be as strongly 
magnetic as a ferromagnetic material would be, since in the latter all the domains are, ideally, pointing in the same 
direction, while in the former a certain amount of neutralization takes place. Thus, ferrites display only about a third the 
maximum strength that a steel magnet would display.  
  
  
  
     The Earth as a Magnet   
  
     The manner in which a compass needle pointed north-and- south was a tantalizing fact to early physicists. Some 
speculated that a huge iron mountain existed in the far north and that the magnetized needle was attracted to it. In 1600, 
the English physicist William Gilbert (1540 - 1603) reported systematic experiments that led to a mom tenable 
solution.   
  
     A compass needle, as ordinarily pivoted, can rotate only about a vertical axis and is constrained to remain perfectly 
horizontal. What if it is pivoted about a horizontal axis and can, if conditions permit, point upward or downward? A 
needle so pivoted (in the northern hemisphere) does indeed dip its north pole several degrees below the horizon and 
toward the ground. This is called magnetic dip.   
  
     Gilbert shaped a loadstone into a sphere and used that to stand for the earth. He located its poles and decided its 
south pole, which attracted the north pole of a compass needle, would be equivalent to the earth's Arctic region, while 
the other would be equivalent to the Antarctic.   
  
     The north pole of a compass needle placed in the vicinity of this spherical loadstone pointed "north" as might be 



expected. In the loadstone's "northern hemisphere," however, the north pole of a compass needle, properly pivoted, also 
showed magnetic dip, turning toward the body of the loadstone. Above the south pole in the loadstone's "Arctic 
region," the north pole of the compass needle pointed directly downward. In the loadstone's "southern hemisphere," the 
north pole of the compass needle angled up away from the body of the loadstone and above its "Antarctic region" 
pointed straight upward.   
  
     Gilbert felt that the behavior of the compass needle with respect to the earth (both in its north-south orientation and 
in its magnetic dip) was strictly analogous to its behavior with respect to the loadstone. He drew the conclusion that the 
earth was itself a spherical magnet with its poles in the Arctic and Antarctic. The compass needle located the north by 
the same force that attracted it to the pole of any other magnet. (It is this natural n of the earth that slowly orients the 
domains in certain t: iron oxide and creates the magnetized load stone from all magnetic studies previous to the 
nineteenth century stemmed.)   
  
     It might easily be assumed that the earth's magnetic poles are located at its geographic poles, but this is not so. If 
they were; the compass needle would point to more or less true north, and it does not. In Gilbert's time (1580), for 

instance, the compass needle in London pointed 110 east of north. The angle by which the needle deviates from true 
north is the magnetic declination. It varies from place to place on the earth, and in any given place varies from year to 

year. The magnetic declination in London is now 80 west of north, and since Gilbert's time, the declination has been as 

great as 250 west of north. In moving from an eastward declination in the sixteenth century to a westward one now, 
there had to be a time when declination was, temporarily, zero, and when a compass needle in London pointed due 
north. This was true in 1657.   
  
     The variation in declination with change in position was first noted by Christopher Columbus (1451-1506) in his 
voyage of discovery in 1492. The compass needle, which had pointed distinctly east of north in Spain, shifted westward 
as he crossed the Atlantic Ocean, pointed due north when he reached mid-ocean, and distinctly west of north thereafter. 
He kept this secret from his crew, for they needed only this clear example of what seemed the subversion of natural law 
to panic and mutiny.   
  
     The existence of magnetic declination and its variation from i spot to spot on the earth's surface would be explained 
if the magnetic poles were located some distance from the geographic poles. This is actually so. The south pole of the 
earth-magnet (which attracts the north pole of the compass needle) is located in the far north and is called, because of 



its position, the north magnetic pole. It is now located just off Canada's Arctic shore, - some 1200 miles from the 
geographic north pole. The south magnetic pole (the north pole of the earth-magnet) is located on the shores of 
Antarctica, west of Ross Sea, some 1200 mites from the geographic south pole.   
  
     The two magnetic poles are not quite on opposite sides of the earth, so the line connecting them (the magnetic axis) 

is not only at an angle of about 180 to the geographic axis, but also does not quite pass through the earth's center.   

  
     The fact that magnetic declination alters with time seems to indicate that the magnetic poles changed their positions 
and indeed the position of the north magnetic pole has shifted by several degrees from the time, one century ago, when 
it was first located.   
  
     For all its size, the earth is but a weak magnet. Thus, in even a small horseshoe magnet, the magnetic intensity 
between the poles can be as high as 1000 oersteds, yet the intensity of the earth's magnetism is only about 3/4 oersted 
even near the magnetic poles, where the intensity is highest. It sinks to 1/4 oersted at points equidistant from the 
magnetic poles (the magnetic equator).   
  
     Lines can be drawn on the face of the earth through points showing equal declination. These are called isogonic 
lines (from Greek words meaning "equal angles"). Ideally, they might be considered lines of "magnetic longitude." 
However, unlike geographic longitude, they are by no means arcs of great circles but curve irregularly in accordance 
with local magnetic properties of the earth's structure. And, of course, they change with time and must be constantly 
redrawn.   
  
     If it is agreed that the earth is a magnet, it yet remains to determine why it is a magnet. By the latter half of the 
nineteenth century, it came to seem more and more likely from several converging lines of evidence that the earth had a 
core of nickel-iron making up one third of its mass. Nothing seemed more simple than to suppose that this core was, for 
some reason, magnetized. However, it also seemed more and more likely that temperatures at the earth's core were high 
enough to keep that nickel-iron mass liquid and well above the Curie point. Therefore, the core cannot be an ordinary 
magnet, and the earth's magnetism must have a more subtle origin. This is a subject to which I will return.   
  
     Magnetic Fields   
  
     Magnetic force may fall off with distance according to an in- verse square law (see Equation 9-1) as gravitational 



force does, but there are important differences. As far as we know, gravitational force between two bodies is not in the 
least affected by the nature of the medium lying between them. In other words, your weight is the same whether you 
stand on bare ground or insert an iron plate, a wooden plank, a foam rubber mattress or any other substance between 
yourself and the bare ground. For that matter, the sun's attraction of the earth is not altered when the 2000-mile 
thickness of the moon slips between the two bodies.   
  
     The force between magnetic poles does, however, alter with the nature of the medium between them, and Equation 
9-1 holds strictly only where there is a vacuum between the poles. To explain this, we must consider the researches of 
the English scientist Michael Faraday (1791-1867).   
  
     In 1831, he noticed something that had been noticed over five centuries earlier by Peter Peregrinus and, 
undoubtedly, by numerous other men who had toyed with magnets through the centuries.... Begin with a sheet of paper 
placed over a bar magnet. If iron filings are sprinkled on the paper and the paper is then jarred so that the filings move 
about and take up some preferred orientation, those filings seem to follow lines that curve from one pole of the magnet 
to the other, crowding together near the poles and spreading apart at greater distances. Each line begins at one pole and 
ends at the other, and no two lines cross. (Of course, some of the lines seem incomplete because they run off the paper 
or because at great distances from the poles they are too weak to be followed accurately by the iron filings. 
Nevertheless it is reasonable to suppose that all the lines, however far they may have to sweep out into space and 
however weak they get, are nevertheless continuous from pole to pole.)   
  
     The shape of the lines depends on the shape of the magnet and the mutual relationship of the poles. In a horseshoe 
magnet the lines cluster about the two poles and in the space between them are straight. The same is true if a north pole 
of one bar magnet is brought near the south pole of another. On the other hand, if the north pole of one bar magnet is 
brought near the north pole of another bar magnet, the lines of force curve away, those from one pole seeming to avoid 
touching those of the other.   
  
     Faraday called these magnetic lines of force and believed them to have real existence. He felt they were made of 
some elastic material that was stretched when extended between two unlike poles and that exerted a force tending to 
shorten itself as an extended rubber band would do. It was this shortening tendency that accounted for magnetic 
attraction, according to Faraday.   
  
     The lines of force about a magnet of any shape, or about any system of magnets can be mapped without the use of 



iron filings. A compass needle always orients itself in such a way as to lie along one of these lines. Therefore, by 
plotting the direction of the compass needle at various points in space, one can succeed in, mapping the lines. In this 
way, the shape of the lines of force about the earth-magnet can be determined.   
  
     Faraday's view of the material existence of lines of force did not survive long. By mid-nineteenth century, the ether 
concept had grown strong in connection with light, and the magnetic lines of force came to be viewed as distortions of 
the ether.   
  
     With the disappearance of the ether concept at the start of the twentieth century, a further step had to be taken. Once 
again, it became a matter of the geometry of space itself. Suppose, for instance, you dropped a pencil into a cylindrical 
hollow. It would automatically orient itself parallel to the axis of the cylinder, If the cylinder were a tube that extended 
for miles, curving gently this way or that, a pencil dropped into it at any point would orient itself parallel to the axis of 
the tube, whatever the direction happened to be in that place. In fact, if you could not see the tube, but only the pencil, 
you could easily map the curves and sinuosities of the tube by noting the position taken up by the pencil at various 
points. The same is true of the compass needle and the magnetic lines of force.   
  
     Each magnetic pole affects the geometry of all of space, and this altered geometry (as compared with what the 
geometry would be in the absence of the magnetic pole) is called a magnetic field. The intensity of the magnetic field 
(the extent to which its geometry try differs from ordinary nonmagnetic geometry of space) drops off as the square of 
the distance from the pole and soon becomes too small to detect. Nevertheless, the magnetic field of every magnetic 
pole in existence fills all of space, and the situation is made bearably simple only by the fact that in the immediate 
neighborhood of any given pole its held predominates over all others to such an extent that it may be considered in 
isolation. (This is true, of course, of gravitational fields as well.)   
  
    The concept of a magnetic field removes the necessity of supposing the magnetic force to representations-at-a-distance. 
It is not that a magnet attracts iron over a distance but that a magnet gives rise to a field that influences a piece of iron 
within itself. The field (that is the space geometry it represents) touches both magnet and iron and no action-at-a-distance 
need be assumed.   
  
    Despite the fact that magnetic lines of force have no material existence, it is often convenient to picture them in literal 
fashion and to use them to explain the behavior of objects within a magnetic field. (In doing so, we are using a "model'-
that is, a representation of the universe which is not real, but which aids thinking. Scientists use many models that are 



extremely helpful. The danger is that there is always the temptation to assume, carelessly, that the models are real; so they 
may be carried beyond their scope of validity. There may also arise an unconscious resistance to any changes required by 
increasing knowledge that cannot be made to fit the model.)   
  
    We can define the lines of force between two magnetic poles in the cgs system (using measurements in centimeters and 
dynes) in such a way that one line of force can be set equal to 1 maxwell (in honor of Maxwell, who did so much in 
connection with both gases and light). In the mks system, where the same measurements are made in meters and newtons, 
a line of force is set equal to 1 weber (in honor of the German physicist Wilhelm Eduard Weber [1804-1891). The weber 
is much the larger unit, 1 weber being equal to 100,000,000 maxwells. Maxwells and webers are units of magnetic flax, a 
measurement you can imagine as representing the number of lines of force passing through any given area drawn 
perpendicularly to those lines.   
  
    What counts in measuring the strength of a magnetic field is the number of lines of force passing through an area of 
unit size. That is the magnetic flux density. The flux density measures how closely the lines of force are crowded 
together; the more closely they crowd, the higher the flux density and the stronger the magnetic field at that point. In the 
cgs system, the unit area is a square centimeter so that the unit of flux density is 1 maxwell per square centimeter. This is 
called 1 gauss, in honor of the German mathematician Karl Friedrich Gauss (1777-1855). In the mks system, the unit area 
is a square meter and the unit of flux density is therefore 1 weber per square meter, a unit which has no special name. 
Since there are 10,000 square centimeters in a square meter and 100,000,000 maxwells in a weber, 1 weber per square 
meter is equal to 10,000 gausses   
  
    Imagine a magnetic north pole and south pole separated by a vacuum. Lines of force run from pole to pole and the flux 
density at any given point between them would have a certain value, depending on the strength of the magnet. Is some 
material substance were placed between the poles then, even though the strength of the magnet were left unchanged, the 
flux density would change. The ratio of the flux density through the substance to that through a vacuum is called the 
relative magnetic permeability. Since this is a ratio, it is a pure number and has no units.   
  
    The permeability of a vacuum is set at 1 and for most material substances; the permeability is very nearly 1. 
Nevertheless, refined measurements show that it is never exactly 1, but is sometimes a little larger than 1 and sometimes 
a little smaller. Those substances with permeability a little larger than 1 are said to be paramagnetic, while those with 
permeability a little smaller than 1 are diamagnetic.   
  



    In a paramagnetic substance, with a permeability higher than 1, the flux density is higher than it would be in a vacuum. 
The lines of force crowd into the paramagnetic substance, so to speak, seeming to prefer it to the surrounding vacuum (or 
air). A paramagnetic substance therefore tends to orient itself with its longest axis parallel to the lines of force so that 
those lines of force can move through its preferred substance over a maximum distance. Again, since the flux density 
increases as one approaches a pole, them is a tendency for the paramagnetic substance to approach the pole (that is, to be 
attracted to it) in order that as many lines of force as possible can pass through it   
  
    On the other hand, a diamagnetic substance, with a permeability of less than 1, has a flux density less than that of a 
vacuum (or air). The lines of force seem to avoid it and to crowd into the surrounding vacuum. Therefore a diamagnetic 
substance tends to orient itself with its longest axis perpendicular to the lines of force so that these lines of force need 
pass through the substance over only a minimum distance. Furthermore, the diamagnetic substance tends to move away 
from the pole (that is, be repelled by it) into a region of lower flux density so that as few lines as possible need pass 
through it.   
  
    Both effects are quite small and become noticeable only when very strong magnetic fields are used. The first to record 
such effects was Faraday, who found in 1845 that glass; sulfur and rubber were slightly repelled by magnetic poles and 
were therefore diamagnetic. The most diamagnetic substance known, at ordinary temperatures, is the element bismuth. 
(At extremely low temperatures, near that of absolute zero, the permeability of some substances drops to zero and 
diamagnetism is then at a maximum.)   
  
    Paramagnetism is considerably more common, and for a few substances permeability may be very high, even in the 
thousands. These high-permeability substances are those previously referred to as ferromagnetic. Here the attraction of 
the magnet and the orientation of iron filings parallel to the lines of force is so marked that it is easily noted.   
  
    Permeability (symbolized by the Greek letter "mu,") must be included in Coulomb's equation (Equation 9-2) to cover 
those cases where the poles are separated by more than vacuum:  
  

F = mm’ / (mu) d2                                                                   (Equation 9-3)   

  
Since (mu) is in the denominator, an inverse relationship is indicated. A diamagnetic substance with a permeability of 
less than 1 increases the magnetic force between poles, while a paramagnetic substance decreases the force. The latter 
effect is particularly marked when iron or steel, with permeabilities in the hundreds and even thousands, is between the 



poles. A bar of iron over both poles of a horseshoe magnet cuts down the magnetic force outside itself to such an extent 
that it almost acts as a magnetic insulator.   
  
  
  

CHAPTER 10 
  

Electrostatics 

  
    Electric Charge   
  
    Gilbert, who originated the earth-magnet idea, also studied the attractive forces produced by rubbing amber. He 
pivoted a light metal arrow so delicately that it would turn under the application of a tiny force. He could, in that way, 
detect very weak attractive forces and proceeded to find substances other than amber, which, on rubbing, would produce 
such forces. Beginning in 1570, he found that a number of gems such as diamond, sapphire, amethyst, opal, carbuncle, 
jet, and even ordinary rock crystal produced such attractive forces when rubbed. He called these substances "electrics." A 
substance showing such an attractive force was said to be electrified or to have gained an electric charge.   
  
    A number of substances, on the other hand, including the metals in particular, could not be electrified and hence were 
"non- electrics."   
  
    Eventually, electricity came to be considered a fluid. When a substance like amber was electrified, it was considered to 
have gained electric fluid which then remained there stationary. Such a charge was called static electricity, from a Latin 
word meaning "to be stationary." and the study of the properties of electricity under such conditions is called 
electrostatics.     
  
    Before electric forces could be studied easily, the fluid had to be concentrated in sizable quantities in greater quantity 
than could be squeezed into small bits of precious and semiprecious materials. Some "electric" that was cheap and 
available in sizable quantities had to be found.   
  
    In the 1660's, the German physicist Otto von Guericke (1602-1686) found such a material in sulfur. He prepared a 



sphere of sulfur, larger than a man's head, arranged so that it could be turned by a crank. A hand placed on it as it turned 
gradually electrified it to a hitherto unprecedented extent. Guericke had constructed the first electrical friction machine.   
  
    Using it, Guericke discovered several similarities between electrostatic forces and magnetic forces. He found, for 
instance, that there was electrostatic repulsion as well as electrostatic attraction, just as there is both repulsion and 
attraction in the case of magnets. Again, a substance brought near the electrified sulfur itself exhibited temporary 
electrification, just as a piece of iron held near a magnet becomes itself temporarily magnetized. Thus there is 
electrostatic induction as well as magnetic induction.   
  
    In 1729, an English electrician, Stephen Gray (1696-1736), electrified long glass tubes and found that corks placed into 
the ends of the tubes, as well as ivory balls stuck into the corks by long sticks, became electrified when the glass itself 
was rubbed. The electric fluid, which came into being at the point of rubbing, must obviously spread throughout the 
substance, through the cork and the stick into the ivory, for instance. This was the first clear indication that electricity 
need not be entirely static but might move.   
  
    While the electric fluid, once it was formed within an "electric" by rubbing, might spread outward into every part of 
the substance, it would not pass bodily through it, entering at one point, for instance, and leaving at another. It was 
otherwise in the case of "non-electrics." where such bodily passage did take place, indeed, the Bow of electric fluid took 
place extremely readily through substances like metals; so readily that a charged electric lost its charge altogether--was 
discharged--if it were brought into contact with metal that was in turn in contact with the ground. The fluid passed from 
the electric, via the metal, into the capacious body of the earth, when it spread out so thinly that it could no longer be 
detected.   
  
    That seemed to explain why metals could not be electrified by rubbing. The electric fluid, as quickly as it was formed, 
passed through the metal into almost anything else the metal touched. Gray placed metals on blocks of resin (which did 
not allow a ready passage to the electric fluid). Under such circumstances, pieces of metal if carefully rubbed, were 
indeed electrified, for the fluid termed in the metal, unable to pass readily through the resin, was trapped so to speak, in 
the metal. In short, as it eventually turned out, electric forces were universally present in matter, just as magnetic forces 
were. 
  
    As a result of Gray's work, matter came to be divided into two classes. One class, of which the metals--particularly 
gold, silver, and copper and aluminum--were the best examples, allowed the passage of the electric fluid with great 



readiness. These are electrical conductors. The other group, such as amber, glass, sulfur, and rubber--just those materials 
that are easily electrified by rubbing--presents enormous resistance to the flow of electric fluid. These are electrical 
insulators (from a Latin word for "island," because such a substance can be used to wall off electrified objects, preventing 
the fluid from leaving and therefore making the objects an island of electricity, so to speak.)   
  
    Ideas concerning electrostatic attraction and repulsion were sharpened in 1733 by the French chemist Charles Francois 
Du Fay (1698-1739). He electrified small pieces of cork by touching them with an already electrified glass rod, so some 
of the electric fluid passed from the glass into the cork. Although the glass rod had attracted the cork while the latter was 
uncharged, rod and cork repelled each other once the cork was charged. Moreover, the two bits of cork, once both were 
charged from the glass, repelled each other.   
  
    The same thing happened if two pieces of cork were electrified by being touched with an already electrified rod of 
resin. However, a glass-electrified piece of cork attracted a resen-electrified piece of cork.  
      It seemed to Du Fay, then, that there were two types of electric fluid, and he called these "vitreous electricity" (from a 
Latin word for "glass") and "resinous electricity." Here, too, as in the case of the north and south poles of magnets, likes 
repelled and unlike attracted.   
  
    This theory was opposed by Benjamin Franklin. In the 1740's, he conducted experiments that showed quite clearly that 
a charge of "vitreous electricity" could neutralize a charge of "resinous electricity," leaving no charge at all behind. The 
two types of electricity were therefore not merely different; they were opposites.   
  
    To explain this, Franklin suggested that then was only one electrical fluid, and all bodies possessed it in some normal 
amount. When this fluid was present in its normal amount, the body was uncharged and showed no electrical effects. In 
some cases, as a result of rubbing, pan of the electrical fluid was removed from the material being rubbed; in other cases 
it was added to the material. Where the body ended with an excess of the fluid, Franklin suggested, it might be considered 
positively charged, and where it ended with a deficit, it would be negatively charged. A positively- charged body would 
attract a negatively-charged body as the electric fluid strove (so to speak) to even out its distribution, and on contact, the 
electric fluid would flow from its place of excess to the place of deficiency. Both bodies would end with a normal 
concentration of the fluid, and both bodies would therefore be discharged.   
  
    On the other hand, two positively-charged bodies would repel each other, for the excess fluid in one body would have 
no tendency to add to the equal excess in the other--rather the reverse. Similarly, two negatively-charged bodies would 



repel each other.   
  
    Electrostatic induction was also easily explained in these terms. If a positively-charged object was brought near an un-
charged body, the excess of fluid in the first would repel the fluid in the second and drive it toward the farthest portion of 
the uncharged body, leaving the nearest portion of that body negatively charged and the farthest portion positively 
charged. (The uncharged body would still remain uncharged, on the whole, for the negative charge on one portion would 
just balance the positive charge of the other.)   
  
    There would now be an attraction between the positively-charged body and the negatively-charged portion of the 
uncharged body. There would also be repulsion between the positively- charged body and the positively-charged portion 
of the uncharged body. However, since the positively-charged portion of the un-charged body is farther from the 
positively-charged body than the negatively-charged portion is, the force of repulsion is weaker than the force of 
attraction, and there is a net attractive force.   
  
    The same thing happens if a negatively-charged body approaches an uncharged body. Here the electrical fluid in the 
un- charged body is drawn toward the negatively-charged body. The uncharged body has a positively-charged portion 
near the negatively-charged body (resulting in a strong attraction) and a negatively-charged portion farther from the 
negatively-charged body (resulting in a weaker repulsion). Again there is a net attractive force. In this way, it can be 
explained why electrically charged bodies of either variety attract uncharged bodies with equal facility.   
  
    Franklin visualized a positive charge and negative charge as being analogous to the magnetic north and south poles, as 
far as attraction and repulsion was concerned. There is an important difference, however. The magnetism of the earth 
offered a standard method of differentiating between the magnetic poles, depending upon whether a particular pole 
pointed north or south. No such easy way of differentiating a positive charge from a negative charge existed.   
  
    A positive charge, according to Franklin, resulted from an excess of electric fluid, but since there is no absolute 
difference in behavior between "vitreous electricity" and "resinous electricity," how could one tell which electric charge 
represents a fluid excess and which a fluid deficit? The two forms differ only with reference to each other.   
  
    Franklin was forced to guess, realizing full well that his chances of being right were only one in two-an even chance. 
He decided that glass, when rubbed, gained electric fluid and was positively charged; on the other hand, when resin was 
rubbed it lost electric fluid and was negatively charged. Once this was decided upon, all electric charges could be 



determined to be positive or negative, depending on whether they were or repelled by a charge that was already 
determined to be positive or negative.   
  
    Ever since Franklin's day, electricians have considered the flow of electric fluid to be from the point of greatest 
positive concentration to the point of greatest negative concentration, the process being pictured as analogous to water 
flowing downhill. The tendency is always to even out the unevenness of charge distribution, lowering regions of excess 
and raising regions of deficit.   
  
    Franklin's point of view implies that electric charge can neither be created nor destroyed. If a positive charge is 
produced by the influx of electric fluid, that fluid must have come from somewhere else, and a deficit must exist at the 
point from which it came. The deficit produced at its point of origin must exactly equal the excess produced at its point of 
final rest. Thus, if glass is rubbed with silk and if glass gains a positive charge, the silk gains an equal negative charge. 
The net electric charge in glass- plus-silk was zero before rubbing and zero after.   
  
    This view has been well substantiated since the days of Franklin, and we can speak of the low of conservation of 
electric charge. We can say that net electric charge can neither be created nor destroyed; the total net electric charge of 
the universe is constant. We must remember that we are speaking of net electric charge. The neutralization of a quantity 
of positive electric charge by an equal quantity of negative electric charge is not the destruction of electric charge. The 
sum of + x and - x is 0, and in such neutralization it is not the net charge that has changed, only the distribution of charge. 
The same is true if an uncharged system is changed into one in which one part of the system contains a positive charge 
and another part an equal negative charge. This situation is exactly analogous to that involved in the law of conservation 
of momentum.   
  
    Electrons   
  
    Actually, both Du Fay's two-fluid theory of electricity and Franklin's one-fluid theory have turned out to possess 
elements of truth. Once the internal structure of the atom came to be understood, beginning in the 1890's (a subject that 
will be taken up in detail in Volume III of this book), it was found that subatomic particles existed, and that some of then 
possessed an electric charge while others did not.   
  
    Of the subatomic panicles that possess an electric charge, the most common are the proton and the electron, which 
possess charges of opposite nature. In a sense, then, the proton and the electron represent the two fluids of Du Fay. On the 



other hand, the proton, under the conditions of electrostatic experiments, is a completely immobile particle, while the 
electron, which is much the lighter of the two, is easily shifted from one body to another. In that sense, the electron 
represents the single electric fluid of Franklin.   
  
    In an uncharged body, the number of electrons is equal to the number of protons and there is no net charge. The body is 
filled with electric charge of both kinds, but the two balance. As a result of rubbing, electrons shift. One body gains an 
excess of electrons; the other is left with a deficit.   
  
    There is one sad point to be made, however. The electrons move in the direction opposed to that which Franklin had 
guessed for the electric fluid. Franklin had lost his even-money bet. Where he thought an excess of electric fluid existed, 
there existed instead a deficit of electrons, and vice versa. For this reason, it was necessary to consider the electric charge 
of the electron to be negative; an excess of electrons would then produce the negative charge required by Franklin's 
deficiency of fluid, while a deficit of electrons would produce the positive charge of Franklin's excess of fluid. Since the 
electron is considered as having a negative charge, the proton must have a positive charge.   
  
    (Electrical engineers still consider the "electric fluid" to how from positive to negative, although physicists recognize 
that electrons flow from negative to positive. For all practical purposes, it doesn't matter which direction of flow is 
chosen as long as the direction is kept the same at all times and there are no changes in convention in mid-stream.)   
  
    Coulomb, who measured the manner in which the force between magnetic poles was related to distance, did the same 
for the force between electrically charged bodies. Here his task was made somewhat easier because of an important 
difference between magnetism and electricity. Magnetic poles do not exist in isolation. Any body possessing a magnetic 
north pole must also possess a magnetic south pole. In measuring magnetic forces between poles, therefore, both 
attractive and repulsive forces exist, and they complicate the measurements. In the case of electricity, however, charges 
can be isolated. A body can carry a negative charge only or a positive charge only. For that reason, attractions can be 
measured without the accompaniment of complicating repulsions, and vice versa.   
  
    Coulomb found that the electric force, like the magnetic force, varied inversely as the square of the distance. In fact, 
the equation he used to express variation of electrical force with distance was quite analogous to the one he found for 
magnetic forces (see Equation 9-l).   
  
    If the electric charge on two bodies is q and q’, and the distance between them is d, then F, the force between them (a 



force of attraction if the charges are opposite or of repulsion if they are the same) can be expressed:  
  

F= q q’ / d2                                                                                          (Equation 10-1)  

  
provided the charges an separated by a vacuum.   
  
    In the cgs system, distances are measured in centimeters and forces in dynes. If we imagine, then, two equal charges 
separated by a distance of 1 centimeter and exerting a force of 1 dyne upon each other, each charge may be said to be 1 
electrostatic unit (usually abbreviated esu) in magnitude. The esu is, therefore, the cgs unit of electric charge.   
  
    The smallest possible charge on any body is that upon an electron. Measurements have shown that to be equal to - 4.8 

X 10-10 esu, where the minus sign indicates a negative charge. This means that a body carrying a negative charge of 1 esu 
contains an excess of approximately 2 billion electrons, while a body carrying a positive charge of 1 esu contains a deficit 
of approximately 2 billion electrons.   
  
    Another commonly used unit of charge-in the mks system --is the coulomb, named in honor of the physicist. A 
coulomb is equal to 3 billion esu. A body carrying a negative charge of 1 coulomb therefore contains an excess of 
approximately 6 billion billion electrons, while one carrying a positive charge of 1 coulomb contains a deficit of that 
many.   
  

    Imagine two electrons one centimeter apart. Since each has a charge of - 4.8 X 10-10 esu, the total force (of repulsion, 

in this case) between them, using Equation 10-1, is (-4.8X 10-10) 2 or 2.25 x l0-19 dynes.   

  
    The two electrons also exert a gravitational force of attraction on each other. The mass of each electron is now known 

to be equal to 9.1 X 10-28 grams. The force of gravitational attraction between them is equal to Gmm’/d2 when G is the 

gravitational constant which equals 6.67 x 10-8 dyne-cm2/gm2. The gravitational force between the electrons is therefore 

equal to (9.1x 10-28) 2 multiplied by 6.67 x 10-8, or 5.5 x 10-62 dynes.   

  

    We can now compare the strength of the electrical force and that of the gravitational force by dividing 2.25 x 10-19 by 

5.5 x 10-62. The quotient is 4 x 1042, which means that the electrical force (or the comparable magnetic force in the case 



of magnets) is some four million trillion trillion trillion times as strong as the gravitational force. It is fair to say, in fact, 
that gravitational force is by far the weakest force known in nature.   
  
    The fact that gravitation is an overwhelming force on a cosmic scale is entirely due to the fact that we are then dealing 
with the huge masses of stars and planets. Even so, if we stop to think that we, with our own puny muscles, can easily lift 
objects upward against the gravitational attraction of all the earth or, for that matter, that a small toy magnet can do the 
same, it must be bone in upon us that gravitational forces are unimaginably weak. And, in fact, when we deal with bodies 
of ordinary size, we completely neglect any gravitational forces between them.   
  
    Electrically charged objects serve as centers of electric fields, which an analogous to magnetic fields. There are electric 
lines of force, just as there are magnetic ones.   
  
    As in the case of magnetic lines of force, electric lines of force may pass through a material substance more readily, or 
less, readily, than they would pass through an equivalent volume pf a vacuum. The ratio of the flux density of electric 
lines of force through a medium to that through a vacuum is the relative permittivity. (This term is analogous to relative 
permeability in the case of magnetism.)   
  
    In general, insulators have a relative permittivity greater than 1; in some cases, much greater. The relative permittivity 
of air is 1.00054, while that of rubber is about 3, and that of mica about 7. For water, the value is 78. Where the relative 
permittivity is greater than 1, the electric lines of force crowd into the material and more pass through it than would pass 
through an equivalent volume of vacuum. For this reason, insulators are often spoken of as dielectrics (the prefix being 
from a Greek word meaning "through," since the lines of force pass through them). The relative permittivity is therefore 
frequently spoken of as the dielectric constant.   
  
    Coulomb's equation for the force between two charged particles might more generally be written, then:  
  

  F = q q” / (kappa) d2                                                                                  (Equation 10-2)  

  
where the particles are separated by a medium with a dielectric constant of (the Greek letter "kappa").   
  
    Electric forces between charged particles decrease, then, if a dielectric is placed between; they decrease more as the 
dielectric constant is increased. The constituent particles of a substance like common table salt, for instance, are held 



together by electric attractions. In water, with its unusually high dielectric constant, these forces are correspondingly 
decreased, and this is one reason why salt dissolves readily in water (its particles fall apart, so to speak) and why water is, 
in general, such a good solvent. 
  
 Electromotive Force   
  
    If we rub a glass rod with a piece of silk, electrons shift from glass to silk; therefore, the glass becomes positively 
charged and the silk negatively charged. With each electron shift, the positive charge on the glass and the negative charge 
on the silk become higher, and it becomes increasingly difficult to move further electrons. To drag more negatively-
charged electrons from the already positively-charged glass means pulling the electrons away against the attraction of the 
oppositely-charged glass. To add those electrons to the already negatively-charged silk means to push it on against the 
repulsion of like-charged bodies. As one proceeds to pile up positive charge on glass and negative charge on silt, the 
attraction and repulsion becomes larger and larger until, by mere hand-rubbing, no further transfer of electrons can be 
carried through.   
  
    This situation is quite analogous to that which arises in connection with gravitational forces when we are digging a 
hole. As one throws up earth to the rim of the hole, the level of earth around the rim rises while the level of earth within 
the hole sinks. The distance from the hole bottom to the rim top increases, and it becomes more and more of an effort to 
transfer additional earth from bottom to top. Eventually, the digger can no longer throw the shovelful of earth high 
enough to reach the height of the rim, and he has then dug the hole as far as he can.   
  
    This points up the value of using the familiar situations involving gravity as an analogy to the less familiar situations 
involving electric forces. Let us then, for a moment, continue to think of earth's gravitational field.   
  
    We can consider that a given body has a certain potential energy depending on its position with relation to earth's 
gravitational field. The higher a body (that is, the greater its distance from the earth's center), the greater its potential 
energy. To lift a body against earths gravity, we must therefore add to its potential energy and withdraw that energy from 
some place else (from our own muscles, perhaps). The quantity of energy that must be added, however, does not depend 
on the absolute value of the original potential energy of the body or of its final potential energy, but merely upon the 
difference in potential energy between the two states. We can fall this difference in potential energy the gravitational 
potential difference.   
  



    Thus, an object on the 80th floor of a skyscraper has a greater potential energy than one on the 10th door of the same 
skyscraper. All points on the 80th floor have the same potential energy, and all points on the 10th floor have the same 
potential energy. Both floors represent equi-potential surfaces. To slide an object from one point on the 10th floor to 
another point on the 10th floor (ignoring friction) takes no energy since the gravitational potential difference is zero. The 
same is true in sliding an object from one point on the 80th floor to another point on the 80th floor. Though the absolute 
value of the potential energy on the 80th floor is greater, the gravitational potential difference is still zero.   
  
    Similarly, it is no harder to lift a body from' the 80th to the 82nd floor than from the 10 to the 12th floor. (Actually, the 
gravitational force is a trifle weaker on the 80th floor than on the 10th, but the difference is so minute that it may be 
ignored.) It is the two-story difference that counts and that is the same in both cases. We can measure the difference in 
height (which is all that counts) by the amount of energy we must invest to raise a body of unit mass through that 
difference. In the mks system, the joule is the unit of energy and the kilogram is the unit of mass. Therefore the unit of 
gravitational potential difference is a joule per kilogram.   
  
    There is an exact analogy between this and the situation in an electric field. Just as one adds energy to move one mass 
away from another mass, so must one add energy to move a negatively- charged body away from a positively-charged 
body, or vice verse, (One must also add energy to· move a negatively-charged body toward another negatively-charged 
body or a positively-charged body toward another positively-charged body. For this there is no exact analogy in the 
gravitational system, since there is no such thing as gravitational repulsion.) The separation of unlike charged bodies or 
the approach of like charged bodies represents an increase in electric potential energy, and once the charged bodies have 
changed position with respect to each other, the difference in the electric potential energy is the electric potential 
difference. (The concept of a change in potential energy is so much more commonly used in electrical work than in other 
branches of physics that when the term potential difference is used without qualification, it may invariably be taken to 
refer to an electric potential difference rather than, say, to a gravitational one.)   
  
    Again the electric potential difference can be measured in terms of the energy that must be added to a unit charge to 
move it a given distance. In the mks system, the unit of charge is the coulomb so that the unit of electric potential 
difference is the joule per coulomb. This unit is used so often that a special name has been given to it, the volt, in honor 
of the Italian physicist Alessandro Volta (1745-1827), whose work will be described. As a result, the electric potential 
difference is sometimes referred to as the "voltage."   
  
    Let us return to the gravitational analogy again and consider an object resting on a flat surface. It has no tendency to 



move spontaneously to another portion of the flat surface, for there is a gravitational potential difference of zero between 
one point on the surface and another. On the other hand, if the object is suspended a meter above the surface and is 
released, it will spontaneously fall, moving from the point of higher potential energy to that of lower potential energy. It 
is the gravitational potential difference that brings about the spontaneous motion.   
  
    Similarly, an electric charge will have no spontaneous tendency to move from one point in an electric field to another 
point at the same potential energy level. If an electric potential difference exists, however, the electric charge will have a 
spontaneous tendency to move from the point of higher energy to that of lower. Since it is the electric potential difference 
that brings about spontaneous motion of electric charge, that potential difference can be spoken of as an electromotive 
force (a force that "moves electricity"), and this phrase is usually abbreviated as emf. Instead of speaking of a potential 
difference of so many volts, one frequently speaks of an emf of so many volts.   
  
    To create a potential difference, or an emf, in the first place, one must in one way or another--bring about a separation 
of unlike charges or a crowding together of like charges. Thus, in rubbing a glass rod, one removes negatively-charged 
electrons from an increasingly positively-charged rod and adds negatively- charged electrons to an increasingly 
negatively-charged piece of silt.   
  
    It is sometimes possible to create an emf by squeezing certain crystals. A crystal is often made up of both positively- 
and negatively-charged particles arranged in orderly fashion in such a way that all the positively-charged particles and all 
the negatively- charged panicles are grouped about the same central point. If two opposite faces of a crystal are placed 
under pressure, the crystal can be slightly Battened and distorted, and the charged particles making up the crystals are 
pushed together and spread out sideways. In most cases, both types of particles change position in identical fashion and 
remain distributed about the same central point. In some cases, however, the change is such that the average position of 
the negatively-charged particles shifts slightly with respect to the average position of the positively-charged panicles. 
This means there is, in effect, a separation of positive and negative charges and a potential difference is therefore created 
between the two faces of the crystal.   
  
    This phenomenon was first discovered by Pierre Curie (who discovered the Curie point) and his brother, Jacques, in 
1880. They called the phenomenon, piezoelectricity ("electricity through pressure").   
  
    The situation can also be reversed. If a crystal capable of displaying piezoelectricity is placed within an electric field so 
that a potential difference exists across the crystal, the crystal alters its shape correspondingly. If the potential difference 



is applied and taken away, over and over again, the crystal can be made Ito vibrate and produce sound waves. If the 
crystal is of the proper size and shape, sound waves of such high frequency can be produced as to be in the ultrasonic 
range. Such inter conversions of sound and electric potential are useful in today's record players.   
  
    Condensers   
  
    In working with electricity, it is sometimes convenient to try to place as much charge within a body as possible, with as 
little effort as possible. Suppose you have a metal plate, insulated in such a way that any electric charge added to it would 
remain. If you touch the plate with a negatively-charged rod, electrons will how into the metal plate and give it a negative 
charge.   
  
    You can continue this process as long as you can maintain a potential difference between rod and plate--that is, as long 
as you can keep the rod, by protracted rubbing, more negatively charged than the plate. Eventually, however, you will 
increase the negative charge of the plate to such a level that no amount of rubbing will make the rod more negatively 
charged than that. The potential difference between rod and plate will then be zero, and a charge will no longer 
spontaneously move.   
  
    Suppose, however, you next bring a second metal plate, one that is positively charged, down over the first and parallel 
to it, but not touching. The electrons in the first plate are pulled toward the positively-charged second plate and crowd 
into the surface facing the positive plate. (The electrons crowding into that surface are now closer together than they, 
were before, when they had been spread out evenly. They are "condensed" so to speak, and so this device of two flat 
plates held parallel and a short distance apart, may be called a condenser.)   
  
    With the electrons in the negative plate crowding into the surface facing the positive plate, the opposite surface has 
fewer electrons and a lower potential. There is once again a potential difference between the negatively charged rod and 
that surface of the first plate, which is away from the second plate. Electrons can once more pass from the rod into the 
plate, and the total charge on the plate can be built up considerably higher than would have been possible in the absence 
of the second plate.   
  
    Similarly, the positive charge on the second plate can be built up higher because of the presence of the negatively-
charged first plate. Because the plates lend each other a greater capacity for charge, a condenser may also be called a 
capacitor.   



  
    The more highly charged the two plates (one positive and one negative), the greater the potential difference between 
them; this is the same as saying that the higher a mountain peak and the lower a valley, the greater the distance then is to 
fall. There is thus a direct relationship between the quantity of charge and the potential difference. If we imagine a 
vacuum between the plates, we can expect the ratio between charge and potential difference to be a constant, and we can 
express this as follows:  
  
     q /v = c                                                                                        (Equation 10-3)  
  
where q is the charge in coulombs, and v is the potential difference in volts. The constant c is the capacitance, for which 
the units are coulombs per volt. One coulomb per volt is referred to as a farad, in honor of Michael Faraday.   
  
    Thus, a condenser (or capacitor) with a capacitance of 1 farad, will pile up a charge of 1 coulomb on either plate, one 
negative and one positive for every volt of potential difference between the plates. Actually, condensers with this large a 
capacitance are not generally met with. It is common, therefore, to use a micro-farad (a millionth of a farad) or even a 
micro-micro-farad (a millionth of a millionth of a farad) as units of capacitance.   
  
    Suppose, now, a dielectric is placed between the plates of a condenser. A dielectric decreases the force of attraction 
between given positive and negative charges and therefore lessens the amount of work required to separate these charges. 
But, as was explained, the potential difference is the measure of the work required to separate unlike charges. This means 
that the potential difference across the condenser, once the dielectric is placed between the plates, is v/(kappa), where, is 
the dielectric constant.   
  
    If we call the capacitance of the condenser with the dielectric, c’ then, in view of this:  
  
          c’ = q / [v/(kappa)]     =  [(kappa) q] / v    = (kappa)[q / v]                 (Equation 10-4) 
  
Combining Equations 10-3 and 10-4:  
  
c' = (kappa) c                                                                   (Equation 10-5)   
  
    We see, then, that placing a dielectric between the plates of a condenser multiplies the capacitance of the condenser by 



the dielectric constant The dielectric constant of air is only 1.0006 (where that of vacuum is taken as 1), so separation of 
the plates by air gap be accepted as an approximation of separation by vacuum. The dielectric constant of glass is about 5, 
however, so if the plates of a condenser are separated by glass, its capacitance incenses fivefold over the value for plates 
separated by air. For a given potential difference, a glass-separated condenser will pile up five times the charge an air-
separated condenser will.   
  
    The capacitance can be further increased by reducing the distance between the plates or by increasing the area of the 
plates or both. If the distance between the plates is decreased, the potential difference decreases (as gravitational potential 
difference would decrease if two objects were one story apart instead of two stories apart). If this is so, then v in Equation 
10-3 decreases while q remains unchanged and c necessarily increases. Again, if the plates were increased in area, there 
would be room for more electric charge to crowd in, so to speak. Consequently, q would increase in Equation 10-3 and so 
therefore would c.   
  
    A condenser with large plates can be unwieldy, but the same effect can be attained if one stacks a number of small 
condensers, and connects all the positive plates by a conducting material such as a metal rod, and all the negative plates 
by another metal rod. In that way, any charge added to one of the plates would spread out through all the plates of the 
same type, and the many small pairs of plates would act like one large pair. The condensers are said in this case to be 
connected in series. 
  
   In such a condenser, one set of plates can be fixed while the other set is pivoted. By turning a knob connected to a rod 
about which the other set is pivoted, one can turn the negative plates, let us say, more and more into line with the positive. 
Essentially only those portions of the plates, which directly face each other, have much condenser action. Consequently 
as the pivoting set of plates moves more and more into line the capacitance increases steadily. If the plates turned out of 
line the capacitance decreases. We have here a variable condenser. 
        An electrically charged object can be discharged if, for instance, a finger is placed to it and if the man attached to the 
finger is standing, without insulation, on the essentially uncharged ground--that is, if the man is grounded. If the object is 
negatively charged, electrons will flow from it through the man and into the earth until the negative charge is dissipated. 
If the object is positively charged, electrons will flow from the earth through the man and into the object until the positive 
charge is neutralized. In either case, then is a flow of charge through the body.   
  
    Since the sensations of a living body are mediated by the flow of tiny amounts of charge through the nerves, it is not 
surprising that the flow of charge that results from discharging a charged object can be sensed. If the flow of charge is a 



small one, the sensation may be no more than a tingle. If it is a large one, the sensation may be a strong pain like that 
produced by a sudden blow. One then speaks of an electric shock. (As in the case of a physical blow, a strong enough 
electric shock can kill.) Since condensers can pile up large charges of electricity, the shock received from such a 
condenser is much larger than that received by discharging an ordinary electrified rod of similar size.   
  
    This unpleasant property of condensers was discovered accidentally in 1745, when the first condensers were more or 
less casually brought into existence. This original condenser evolved into a glass jar, coated inside and outside with metal 
foil. It was corked and a metal rod pierced the cork. A metal chain suspended from the rod touched the metal foil inside 
the glass jar.                                                        
  
    Suppose the metal foil outside the glass is grounded. If the metal rod sticking up from the cork is touched with a 
negatively-charged rod, electrons will enter the metal and spread downward into the internal foil coating. The negative 
charge on that internal foil repels electrons on the outer on the outer foil and forces them down the conductor connecting 
it to the ground, where those electrons spread into the general body of the planet and can be forgotten. If this is repeated 
over and over, a large negative charge is built up on the internal foil and a large positive charge on the external foil; a 
much larger charge (thanks to the fact that the layers of foil act as a glass-separated condenser) than the early 
experimenters could possibly have expected.   
  
    The first men to produce condensers of this sort (the German experimenter Ewald George von Kleist in 1745 and the 
Dutch physicist Pieter van Musschenbroek [1692-1761] in 1746, were surprised and even horrified when they discharged 
the devices and found themselves numbed and stunned by the shock. Von Kleist abandoned such experiments at once, 
and Van Musschenbroek proceeded further only with the greatest caution. Since Musschenbroedid his work at the 
University of Leyden, in the Netherlands, the condenser came to be called a Leyden jar.   
  
    Through the second halt of the eighteenth century, the Leyden jar was used for important electrical experiments. A 
charge could be collected and then given off in such unprecedented quantities that it could be used to shock hundreds of 
people who were all holding hands, kill small animals, and so on. These experiments were not important in themselves 
but served to dermatitis electrical phenomena and to rouse the interest of the scientific community (and of the general 
public, too).   
  
    In particular, the Leyden jar dramatized the matter of discharge through air. Dry air is an insulator, but insulation is 
never perfect, and if the charge on any object is great enough, it will force itself across a substance that is ordinarily an 



insulator. (Thus, you can imagine a weight resting upon a wooden plank suspended from its ends, and several feet above 
the ground. The wooden plank acts as an "insulator" in the sense that the weight cannot move downward despite its 
tendency to do so as a result of the gravitational potential difference between itself and the ground. If the weight is made 
heavier and heavier, a point will be reached where the plank breaks, and the weight drops. The "insulator" has been 
broken down, and the weight is "discharged," to use electrical terminology. )   
  
    When an electric charge forces itself across an ordinarily insulating gap of air, the air is heated by the electrical energy 
to the point where it glows. The discharge is therefore accompanied by a spark. The heated air expands and then, losing 
its heat to the surrounding atmosphere, contracts again. This sets up sound-wave vibrations, so the discharge is not only 
accompanied by a spark but also by a crackle. Such sparks and crackling were noted even by Guericke in his work with 
his charged ball of sulfur. With the Leyden jar and its much greater charge accumulation, sparks and cradling became 
most dramatic, and discharge would take place over longer gaps of air.   
  
    Franklin, who experimented industriously with Leyden jar, could not help but see the similarity between such a 
discharge and the thunder and lightning accompaniments to rainstorms. The Leyden jar seemed to produce miniature 
bolts of lightning and tiny peals of thunder, and contrariwise, earth and clouds during a thunderstorm seemed to be the 
plates of a gigantic Leyden jar. Franklin thought of a way of demonstrating that this was more than poetic fancy.   
  
    In June 1752, he flew a kite during a thunderstorm. He tied a pointed metal rod to the wooden framework of the kite 
and attached a length of twine to it. This he attached to the cord that held the kite. He also attached an iron key to the end 
of the twine. To avoid electrocution, he remained under a shed during the storm and held the cord of the kite not directly, 
but by means of a dry length of insulating silk string.   
  
    The kite vanished into one of the clouds and Franklin noted the fibers of the kite cord standing apart as though all were 
charged and repelling each other. Presumably, the key had air gained a charge. Cautiously, Franklin brought the knuckle 
of his hand near the key; a spark leaped out, the same kind of spark, accompanied by the same crackle, one would expect 
of a Leyden jar. Franklin then brought out a Leyden jar he had with him and charged it with electricity from the clouds. 
The result was precisely the same as though he had charged it from an electrical friction machine. Franklin had thus, 
beyond doubt, showed that then was electricity in the high heavens just as there was on the ground, that lightning was a 
giant electrical discharge, and that thunder was the giant crackle that accompanied it.   
  
    He went further. Franklin experimented with the manner of discharge where bodies of different shapes were involved. 



Thus, if a metal sphere were brought near a charged body, there would be a discharge, let us say, across a one-inch gap of 
air. If a metal needle were brought near the same body charged to the same extent, discharge would take place across an 
air gap of six to eight inches. This could only be taken to mean that it was easier to discharge a charged body by means of 
a pointed object than a blunt object. Furthermore, the discharge by way of the point of a needle rook place with such ease 
that it was not accompanied by noticeable sparks and crackles. (Nevertheless the fact of discharge could be detected 
easily enough, since the charged body suddenly lost the ability to repel a small similarly charged cork ball hanging in the 
vicinity.)   
  
    It occurred to Franklin that this phenomenon could be made use of on a large scale in connection with thunderstorms. 
If a long pointed metal rod were raised above the roof of a building, it would discharge the charge-laden thunderclouds 
more efficiently and quietly than would the building itself. The clouds would be discharged before they had built up 
enough charge to close the gap violently by means of a lightning bolt between themselves and the hour. If conductors 
were attached to such a lightning rod, the charge drawn from the clouds could be conducted harmlessly to the earth and 
the house, in this manner, protected from lightning.   
  
    The lightning rod worked very well indeed, and over the next couple of decades, structures throughout America and 
Europe came under the protecting blanket of Franklin’s invention. Franklin was the first gnat scientist produced by the 
New World and though this invention in particular he became famous among the scientists of Europe (a fact that had 
important political consequences when Franklin was sent on a mission to France during the American Revolution. a 
quarter-century after he flew his kite). With the invention of the lightning rod, the study of electrostatics reached a 
climax. By the end of the eighteenth century, a new aspect of electricity came to the fore, and electrostatics receded into 
the background.   
  
  
  

CHAPTER 11 

  

Electric Currents 

  
    Continuous Electron Flow   
  



    Charge can move from one point to another (something which can also be described as the flowing of an electric 
current), as has been understood from the time of Gray in the early eighteenth century. However, before 1800 only 
momentary flows of this sort were encountered. Charge could be transferred from a Leyden jar, for instance, to the 
human body, but after one quick spark, the transfer was done. A much huger charge transfer is that of lightning, yet "as 
quick as lightning" is a folk saying.   
  
    In order to arrange for a continuous transfer of charge, or a continuous flow of current from point A to point B, it is 
necessary to produce a new supply of charge at point A as fast as it is moved away, and consume it at point B as fast as it 
is brought there.   
  
    Methods for doing so developed out of the observations first made in 1791 by the Italian physician and physicist Luigi 
Galvani (1737-1798). Galvani was interested in muscle action and in electrical experiments as well. He kept a Leyden jar 
and found that sparks from it would cause the thigh muscles of dissected frogs to contract, even though there was no life 
in them. Others had observed this, but Galvani discovered something new when a metal scalpel touched the muscle at a 
time when a spark was drawn from a nearby Leyden jar, the muscle twitched even though the spark made no direct 
contact.   
  
    Suspecting this might be caused by induced electric charge in the scalpel, Galvani exposed frogs' thigh muscles to the 
electrified atmosphere of a thunderstorm, suspending them by brass hooks on an iron railing. He obtained his contractions 
but found that a thunderstorm was not, after all, necessary. All that was necessary was that the muscle be touched 
simultaneously by two different metals, whether any electric spark was in the vicinity or not, and whether there was a 
thunderstorm or not.   
  
    Two dissimilar metals in simultaneous contact with a muscle could not only produce muscle contractions, but they 
could do so a number of times. It seemed certain that electricity was somehow involved and that whatever produced the 
electric charge was not put out of action after discharge and muscle contraction; instead the charge could be 
spontaneously regenerated again and again. Galvani made the assumption that the source of the electricity was in muscle 
and spoke of "animal electricity."   
  
    Others, nevertheless, suspected that the origin of the electric charge might lie in the junction of the two metals rather 
than in muscle, and outstanding among this group was the Italian physicist Alessandro Volta (1745-1827). In 1800, he, 
studied combinations of dissimilar metals, connected not by muscle tissue but by simple solutions that by no stretch of 



the imagination could be considered to have any connection with a "life force."   
  
    He used chains of dissimilar metals; rightly suspecting that he could get better results from a number of sources 
combined than from a single one. He first used a series of bowls half full of salt water (each taking the place of a frog 
muscle) and connected them by bridges of metal strip, each composed of copper and zinc soldered together. The copper 
end was dipped into one bowl and the zinc end into another. Each bowl contained a copper end of one bridge on one side 
and the zinc end of another bridge on the other side.   
  
    Such a "crown of cups," as Volta called it, could be used as a source of electricity, which was thus clearly shown to 
originate in the metals and not in animal tissue. What's more, the electricity was produced continuously and could be 
drawn off as a continuous flow.   
  
    To avoid quantities of fluid that could slosh and spill, Volta tried another device. He prepared small discs of copper or 
silver (coins did very well) and other discs of zinc. He then piled them up: silver, zinc, silver, zinc, silver, zinc, and so on. 
Between each silver-zinc pair, he placed cardboard discs that had been moistened with salt water and that served the 
purpose of Galvani's frog muscle or Volta's own bowl of salt water. If the top of such a "voltaic pile" was touched with a 
metal wire, a spark could then be drawn out of the bottom, assuming that the bottom was touched with the other end of 
the same wire. In fact, if top and bottom were connected, a continuous current would flow through the wire.   
  
    The reason for this was not thoroughly understood for another century, but it rested on the fact that atoms of all matter 
include as part of their internal structure negatively-charged electrons and positively-charged protons. The electric charge 
produced by a continuously operating voltaic pile is therefore not truly created but is present constantly in matter. For a 
pile to work it is only necessary that it serve, in some manner, to separate the already-existing negative and positive 
charges.   
  
    Such separation is most simply described where two different metals alone are involved. Imagine two metals; say zinc 
and copper, in contact. Each metal contains electrons, bound by forces of greater or lesser extent to the atoms of the 
metal. The forces binding the electrons to zinc atoms are somewhat weaker than those binding electrons to copper. At the 
boundary, then, electrons tend to slip across from zinc to copper. The copper, with its stronger grip, wrests the electrons, 
so to speak, from the zinc.   
  
    This does not continue for long, for as the electrons enter the copper, that metal gains a negative charge while the zinc 



comes to have a positive charge. Further transfer of electrons away from the attraction of the positively-charged zinc and 
into the repelling force of the negatively-charged copper quickly becomes impossible, so an equilibrium is reached while 
the charge on each metal is still extremely minute. Still, the charge is large enough to be detected, and because unlike 
charges have been separated, a contact potential difference has been set up between the two metals.   
  
    If the temperature is changed, the force attracting electrons to atoms is also changed, but generally by different 
amounts for different metals. Imagine a long strip of zinc and a long strip of copper in contact at the two ends only (a 
thermocouple) and end kept at a different temperature. There is a contact potential difference at each end, but the two 
have different values. The copper may be able to seize more electrons at end A than at B, because at the temperature of 
end A, its electron-binding force has been strengthened to a greater extent than has that of the zinc.   
  
    Since the electron concentration in the copper at end A it greater than in the copper at end B, electrons flow through the 
copper from A to B. At end B there are now present too many electrons for the copper to retain at its particular 
temperature. Some of the electrons slip over to the zinc, therefore. Meanwhile, at end A, with some of the electrons lost, 
the copper can gain still more from the zinc.   
  
    The process continues indefinitely, with electrons traveling from end A to end B through the copper and then back 
from B to end A through the zinc, and this continues as long as the temperature difference between the two ends is 
maintained. Such thermoelectricity was first observed in 1821 by the German physicist Thomas Johann Seebeck (1770-
1831).   
  
    Possible practical applications of the phenomenon are hard to see. The amount of current that flows through the 
thermo-couple varies directly with the size of the temperature difference between the two ends; consequently, a 
thermocouple may be used as a thermometer. Indeed, if high melting metals such as platinum are used, thermocouples 
can be used to measure temperature in ranges far too high for ordinary thermometers. Furthermore, since even very 
minute electric currents can be easily detected and measured, thermocouples can be used to detect very feeble sources of 
heat; for example, that arising from the moon or from Venus.   
  
    Chemical Cells   
  
    The junction of dissimilar metals by way of a conducting solution brings about a situation analogous to that of a 
thermo couple, but without the necessity of a temperature difference.  



  
    Suppose, for instance, that a strip of zinc is partially inserted into a solution of zinc sulfate. The zinc has a distinct 
tendency to go into solution. Each zinc atom, as it goes into solution, leaves two electrons behind so that the zinc rod 
gains a negative charge. The zinc atom minus two of the electrons it normally carries has a positive charge equal to that 
of the negative charge of the lost electrons. An electrically charged atom is called an ion, so we may summarize matters 
by saying that the zinc in zinc sulfate produces positively-charged ions that enter the solution, while the zinc remaining 
behind gains a negative charge.   
  
    Imagine also a strip of copper inserted into a solution of copper sulfate. The copper sulfate solution contains positively- 
charged copper ions, There is no tendency for the copper metal to form more copper ions. Rather the reverse is true. The 
copper ions tend to return to the rod carrying with them their positive charge. Now suppose that the acid with its zinc strip 
and the copper sulfate with its copper strip are connected by a porous barrier so that liquid can slowly seep to and fro. We 
have a zinc strip carrying a small negative charge on one side and a copper strip carrying a small positive charge on the 
other.   
  
    If the two strips are connected by a wire, the surplus electrons in the negatively charged zinc flow easily through the 
wire into the copper strip, which suffers a deficit of electrons. As the zinc loses its electron excess and therefore its 
negative charge, more zinc ions go into solution to produce a new electron excess. Moreover, as the copper gains 
electrons and loses its positive charge, more positively charged copper ions can be attracted to the rod.   
  
    In short, electrons flow from the zinc to the copper by way of the wire, and then flow back from copper to zinc by way 
of the solution. The flow continues in its closed path until such time as all the zinc has dissolved or all the copper ions 
have settled out (or both). In the thermocouple, the electron flow was maintained by a temperature difference; in a voltaic 
pile, it was maintained by a chemical reaction.   
  
    Although the electron flow through the wire is from the zinc to the copper, electricians, following Franklin’s wrong 
guess, accept the convention that the flow of current is from the copper (the positive pole) to the zinc (the negative pole).  
  
    A generation after Volta's experiment, Faraday termed the metal rod that served as poles when placed in solutions, 
electrodes, from Greek words meaning "route of the electricity." The positive pole he called an anode ("upper route") the 
negative pole a cathode ("lower route"), since he visualized the electricity as flowing downhill from anode to cathode.   
  



    Different chemicals so arranged as to give rise to a steady flow of electricity make up a chemical cell, or an electrical 
cell, or an electrochemical cell. All three names are used. Very often, as in Volta's original experiments, groups of cells 
are used. Groups of similar objects are referred to as "batteries," and for that reason groups of cells such as the voltaic 
pile are referred to as electric batteries, or simply batteries. (In ordinary conversation, even a single chemical cell may be 
referred to as a "battery.")   
  
    With Volta's discovery it became possible to study steady and long-continued flows of electric current. It was popular 
at first to call this phenomenon "galvanism" or "galvanic electricity," in honor of Galvani. However, it is more logical to 
call the study; electrodynamics ("electricity-in-motion") as opposed to electro-statics. The study of those chemical 
reactions that give rise to electric currents is, of course, electrochemistry.   
  
    Electric currents were put to startling use almost at once. Since a flow of electrons is produced as a result of chemical 
reactions, it is not surprising that the electrons of a current, routed through a mixture of chemical substances, serve to 
initiate a chemical reaction. What's more, the chemical reactions that may easily be carried through by this method may 
be just those that prove very difficult to bring about in other ways.   
  
    In 1800, only six weeks after Volta's initial report, two English scientists, William Nicholson (1753-1815) and 
Anthony Carlisle (1768-1840), passed an electric current through water and found that they could break it up into 
hydrogen and oxygen. This process of bringing about a chemical reaction through an electric current is termed 
electrolysis ("loosening by electricity") because so often, as in the case of water, the reaction serves to break up a 
molecule into simpler substances.   
  
    In 1807 and 1808, the English chemist Humphrey Davy (1778-1829), using a battery of unprecedented power, was 
able to decompose the liquid compounds of certain very active metals. He liberated the free metals themselves and was 
the first to form such metals as sodium, potassium, calcium, strontium, barium and magnesium--a feat that till then had 
been beyond the non-electrical abilities of chemists.   
  
    Davy's assistant, Faraday, went on to study electrolysis quantitatively and to show that the mass of substance separated 
by electrolysis was related to the quantity of electricity passing through the system. Faraday's laws of electrolysis (which 
will be taken up in some detail in Volume III) did much to help establish the atomistic view of matter then being 
introduced by the English chemist John Dalton (1766-1844), In the course of the next century, they helped guide 
physicists to the discovery of the electron and the working out of the internal structure of the atom.   



  
    As a result of Faraday's studies, a coulomb can be defined not merely in terms of total quantity of charge, or of total 
current (something not very easy to measure accurately), but as the quantity of current bringing about a certain fixed 
amount of chemical reaction (and that last could be measured quite easily). For instance, a coulomb of electric current 
passed through a solution of a silver compound will bring about the formation of 1.18 milligrams of metallic silver.   
  
    Chemists are particularly interested in a mass of 107.87 grams of silver for this is something they call "a gram-atomic 
weight of silver." Therefore, they are interested in the number of coulombs of current required to produce 107.87 grams 
of silver. But 107.87 grams is equal to 107,870 milligrams, and dividing that by 1.18 milligrams (the amount of silver 
produced by one coulomb), we find that it takes just about 96,500 coulombs to deposit a gram-atomic weight of silver out 
of a solution of silver compound. For this reason, 96,500 coulombs is referred to as 1 faraday of current.   
  
    A coulomb of electricity will deposit a fixed quantity of silver (or bring about a fixed amount of any particular 
chemical reaction) whether current passes through the solution rapidly or slowly. However, the rate at which the silver is 
deposited (or the reaction carried through) depends on the number of coulombs passing through the solution per unit of 
time. It would be natural to speak of the rate of flow of current (or of current intensity) as so many coulombs per second. 
One coulomb per second is called 1 ampere, in honor of the French physicist Andre Marie Ampere (1775- 1836), whose 
work will be described later. The ampere, then, is the unit of current intensity.   
  
    If, then, a current flowing through a solution of silver compound deposits 1.18 milligrams of metallic silver each 
second, we can say that 1 ampere of current is flowing through the solution.   
  
    Resistance   
  
    The rate of flow of electric current between point A and point B depends upon the difference in electric potential 
between these two points. If a potential difference of 20 volts serves to set up a current intensity of 1 ampere between 
those two points, a potential difference of 40 volts will produce a current intensity of 2 amperes, and a potential 
difference of 10 volts, one of 0.5 amperes.   
  
    This direct proportionality between potential difference and current intensity is true only if current is passed over a 
particular win under particular conditions. If the nature of the path over which the current flows is changed, the 
relationship of potential difference and current intensity is changed, too.   



  
    Lengthening a wire, for instance, will reduce the current intensity produced in it by a given potential difference. If 20 
volts will produce a current intensity of 1 ampere in a wire one meter long, the same, 20 volts will produce only 0.5 
amperes in a wire of the same composition and thickness but two meters long. On the other hand, if the wire is thickened, 
the current intensity produced by a given potential difference will be increased as the cross- sectional area or, which is the 
same thing, as the square of the diameter of the wire. If 20 volts will produce a 1-ampere current through a wire one 
millimeter in thickness, it will produce a 4-ampere current through an equal length of wire two millimeter in thickness.   
  
    Then, too, the nature of the substance conducting the electricity counts. If 20 volts produces a current of 3 amperes in a 
particular copper wire, it would produce a 2-ampere current in a gold wire of the same length and thickness, and a 1-
ampere current through a tungsten wire of the same length and thickness. Through a quartz fiber of the same length and 
thickness, a current intensity of 0.00000000000000000000000003 amperes would be produced--so little that we might as 
well say none at all.   
  
    This sort of thing was investigated by the German physicist Georg Simon Ohm (1787-1854). In 1826, he suggested 
that the current intensity produced in a given pathway under the influence of a given potential difference depended on the 
resistance of that pathway. Doubling the length of a wire doubled its resistance; doubling its diameter reduced the 
resistance to a quarter of the original value. Substituting tungsten for copper increased resistance threefold, and so on.   
  
    The resistance could be measured as the ratio of the potential difference to the current intensity. If we symbolize 
potential difference as E (for "electromotive force"), current intensity as I, and resistance as R, then we can say:  
  
         R = E / I          (Equation 11-1)  
  
This is Ohm's low.  
By transposition of terms, Ohm's law can of course also be written as I = E/R and as E = IR.   
  
    Resistance is measured, as one might perhaps expect, in ohms. That is, if 1 volt of potential difference produces a 
current intensity of 1 ampere through some conducting pathway, then the resistance of that pathway is 1 ohm. From 
Equation 11-1, applied to the units of the terms involved, we see that 1-ohm can be defined as 1 volt per ampere.   
  
    Sometimes it is convenient to think of the conductance of a substance rather than of the resistance. The conductance is 



the reciprocal of the resistance, and the unit of conductance was (in a rare fit of scientific whimsy) defined as the mho, 
which is "ohm" spelled backward.   
  
    A pathway with a resistance of 1 ohm has a conductance of mho. A resistance of 3 ohms implies a conductance of 1/3 
mhos; a resistance of 100 ohms implies a conductance of 1/100 mhos, and so on. If we symbolize conductance by C, 
from Equation 11-1, we fan say that:  
  
          C = 1 / R = I / R                                                    (Equation 11-2)  
  
so that 1 mho is equal to 1 ampere per volt.   
  
    For any given substance, resistance depends upon the length and diameter of the conducting pathway (among other 
things). In general, the resistance varies directly with length (L) and inversely with the cross-sectional area (A) of the 
pathway. Resistance is, therefore, proportional to L/A. If we introduce a proportionality constant,  (the Greek letter 
"rho"), we can say that: 
  
           R = (rho) L / A                                                    (Equation 11-3)   
  
    The proportionality constant p is the resistivity, and each substance has a resistivity characteristic for itself. If we solve 
for resistivity by rearranging Equation 11-3, we find that:  
  
               (rho)  = RA / L                           (Equation 11-4)  
  
Since in the mks system, the unit of R is the ohm, that of A is the square meter (or meters) and that of L is the meter. The 
unit of (rho), according to Equation 11-4, would be ohm-meters per meter, or ohm-meter. The better the conductor, the 

lower the resistivity. The best conductor known is the metal silver, which at 00C has a resistivity of about 0.0000000152, 

or 1.52 X 10-8 ohm-meters. Copper is close behind with 0.0000000154, while gold and aluminum come next with 
0.0000000227 and 0.0000000263 respectively. In general, metals have low resistivities and are therefore excellent 
conductors. Even Nichrome, an alloy of nickel, iron and chromium, which has an unusually high resistivity for a metal, 
has a resistivity of merely 0.000001 ohm-meters. This low resistivity of metals comes about because their atomic 
structure is such that each atom has one or two electrons that are loosely bound. Charge can therefore easily be 
transferred through the metal by means of these electrons. 



  
    Substances with atomic structures such that all electrons are held tightly in place have very high resistivities. Even 
tremendous potential differences can force very little current through them. Substances with resistivities of over a million 
ohm-meters are therefore nonconductors. Maple wood has a resistivity of 300 million ohm-meters; glass a resistivity of 
about a trillion; sulfur one of a quadrillion; and quartz something like 500 quadrillion.   
  
    Between the low-resistivity conductors and the high-resistivity nonconductors, there is a group of substances 
characterized by moderate resistivities, higher than that of Nichrome but less than that of wood. The best-known 

examples are the elements germanium and silicon. The resistivity of germanium is 2 ohm-meters at 00C and that of 
silicon is 30,000. Substances like germanium and silicon are therefore called semiconductors.   
  

    Notice that the resistivities given above are for 00C. The value changes as temperature rises, increasing in the case of 
metals. One can picture matters this way. The electrons moving through a conductor are bound to find the atoms of the 
substance as barriers to motion, and some electrical energy is lost in overcoming this barrier. This energy loss is due to 
the resistance of the medium. If the temperature of the conductor rises, the atoms of the conductor vibrate more rapidly, 
and the electrons find it more difficult to get through; consequently, resistivity rises. (Compare your own situation, for 
instance, making your way first through a quietly standing crowd and then through the same crowd when it is milling 
about.)   
 

     If the resistivity is a given value at 00C p(0), it rises by a fixed small fraction of that amount p(0) (alpha) for each 
degree rise in temperature (t). The increase in resistivity for any given temperature is therefore p(0)(alpha)(t). The total 

resistivity at that temperature p(t) is therefore equal to the resistivity at 00C plus the increase, or:   

  
    p(t)  = p(0)  

 
p(0) (alpha) (t)   =  p(0) [1 + (alpha) t]                            (Equation 11-5)   

  
    The constant, (alpha) which is the fractional increase in resistivity per degree, is the temperature coefficient of 
resistance.   
  
    As long as the temperature coefficient of resistance remains unchanged, the actual resistance of a particular conductor 
varies with temperature in a very simple way. From the resistance of a high-melting metal wire of given dimensions it is 
therefore possible to estimate high temperatures.   



  
    For semiconductors, the temperature coefficient of resistivity is negative--that is, resistance decreases as temperature 
goes up. The mason for this is that as temperature goes up the hold of the material on some of its electrons is weakened; 
more are available for moving and transferring charge. The increase in the number of available electrons more than 
makes up for the additional resistance offered by the more strongly vibrating atoms, so overall resistance decreases.   
  
    If the temperature coefficient of resistance of conductors was truly constant, one might expect that resistance would 
decrease to zero at temperatures just above absolute zero. However, at low temperatures, resistivity slowly decreases and 
the rate at which resistance declines as temperature drops slows in such a way that as the twentieth century opened, 
physicists were certain that a metal's resistance would decline to zero only at a temperature of absolute zero and not a 
whit before. This seemed to make sense since only at absolute zero would the metallic atoms lose their vibrational energy 
altogether and offer no resistance at all to the movement of electrons.   
  
    However, actual resistance measurements at temperatures close to absolute zero became possible only after the Dutch 
physicist Heike Kamerlingh-Onnes (1853-1926) managed to liquefy helium in 1908. Of all substances, helium has the 

lowest liquefaction point, 4.20K, and it is only in liquid helium that the study of ultra-low temperatures is practical. In 
1911, Kamerlingh-Onnes found to his surprise that the resistance of mercury, which was growing less and less in 

expected fashion as temperature dropped, suddenly declined precipitously to zero at a temperature of 4.160K.   

  
    A number of other metals show this property of superconductivity at liquid helium temperatures. There are some 
alloys, in fact, that become super-conductive at nearly liquid hydrogen temperatures. An alloy of niobium and tin remains 

superconductive up to a temperature of 18.10K. Others, like titanium, become superconductive only at temperatures 

below 0.390K. Although as many as 900 substances have been found to possess superconductive properties in the 
neighborhood of absolute zero, there remain many substances (including the really good conductors at ordinary 
temperatures, such as silver, copper, and gold) that have, as yet, shown no superconductivity at even the lowest 
temperatures tested.   
  
    Electric Power   
  
    It takes energy to keep an electric current in being against resistance. The amount of energy required varies directly 
with the total amount of current sent through the resistance. It also varies directly with the intensity of the current. Since, 



for a given resistance, the current intensity varies directly with potential difference (as is required by Ohm's law), we can 
say that the energy represented by a particular electric current is equal to the total quantity of charge transported 
multiplied by the potential difference.   
  
    Since energy can be transformed into work, let us symbolize the electric energy as W. This allows us to keep E for 
potential difference, and we can let e stand for the total quantity of charge transported. We can then say:   
  
    W  =  EQ                     (Equation 11-6)   
  
    The unit of potential difference is the volt and that of the total charge, the coulomb. If energy equals potential 
difference multiplied by total charge transferred, the unit of energy must equal volts multiplied by coulombs. However, a 
volt has been defined as a joule per coulomb. The units of energy must therefore be (joule/coulomb) (coulomb), or joules. 
The joule in the mks unit of energy, and we can say, then, that when 1coulomb of electric charge is transported across a 
resistance under a potential difference of I volt, then 1 joule of energy is expended and may be converted into other forms 
of energy such as work, light, or heat.   
  
    It is often more useful to inquire into the rate at which energy is expended (or work performed) rather than into the 
total energy (or total work). If two systems both consume the same amount of energy or perform the same amount of 
work, but one does it in a minute and the other in an hour, the difference is clearly significant.   
  
    The rate at which energy is expended or work performed is termed power. If we consider the energy expended per 
second, the units of power becomes joules per second. One joule per second is defined as 1 watt, in honor of the Scottish 
engineer James Watt (1736-1819), whose work was dealt with earlier.   
  
    If 1 watt is equal to 1 joule per second and 1 joule is equal to 1 volt-coulomb (as Equation 11-6 indicates), then 1 watt 
may be considered as equal to 1 volt-coulomb per second. But 1 coulomb per second is equal to 1-ampere; therefore a 
volt-coulomb per second is equivalent to a volt-ampere, and we can conclude that 1-watt is equal to 1 volt-ampere. What 
this means is that a current, driven by a potential difference of 1 volt and possessing an intensity of 1 ampere, possesses a 
power of 1 watt. In general, electric power is determined by multiplying the potential difference and the current intensity. 
If we symbolize the power as P, we can say:   
  
          P  = E I                                               (Equation 11-7)   



  
    An electrical appliance is usually rated in watts; what is indicated, in other words, is its rate of consuming electrical 
energy. We are most familiar with this in the case of light bulbs. Here the energy expended is used to increase the 
temperature of the filament within the bulb. The greater the rate of energy expenditure, the higher the temperature 
reached, and the more intense is the light radiated. It is for this reason that a 100-watt bulb is brighter than a 40-watt bulb-
-and hotter to the touch, too.   
  
    The potential difference of household current is usually in the neighborhood of 120 volts, and this remains constant. 
From Equation 11-7, we see that I = P/E. For a 100-watt bulb running on household current, then, I= 100/120 = 5/6. The 
current intensity in a 100-watt bulb is therefore 5/6 ampere. From this we can tell at once what the resistance (R) of the 
light bulb must be. Since, by Ohm's law, R = E/I. R = 120 divided by 5/6, or 144 ohms.   
  
    The watt is the unit of power in the mks system, but it is not the most familiar such unit. Quite frequently, one uses the 
kilowatt, which is equal to 1000 watts. Completely outside the mks system of units is the horsepower, which, in the 
United States at any rate, retains its popularity as the measure of the power of internal combustion engines. The 
horsepower is a larger unit than the watt;  
1 horsepower = 746 watts. It follows that 1 kilowatt = 1.34 horsepower.   
  
    Since power is energy per time, energy must be power multi- plied by time. This relationship (as always) carries over 
to the units. Since 1 watt = 1 joule/second, 1 joule = 1 watt-second. The watt-second is, therefore, a perfectly good mks 
unit of energy - as good as the joule to which it is equivalent. A larger unit of energy in this class is the kilowatt-hour. 
Since a kilowatt is equal to 1000 watts and an hour is equal to 3600 seconds, a kilowatt-hour is equal to (1000)(3600) 
watt-seconds, or, joules. In other words, 1-kilowatt-hour = 3,600,000 joules. A 100-watt bulb (0.1 kilowatts) burning for 
24 hours expends 2.4 kilowatt-hours of energy. The household electric bill is usually based on the number of kilowatt-
hours of energy consumed.   
  
    From Ohm's law (Equation 11-1) we know that E=IR. Combining this with Equation 11-7, we find that:   
  

    P = I2  R                                                (Equation 11-8)   

  
    In other words, the rate at which energy is expended in maintaining an electric current varies directly with the 
resistance involved, and also with the square of the current intensity.   



  
    There are times when it is desirable to expend as little energy as possible in the mere transportation of current, as in 
conducting the current from the battery (or other point of origin) to the point where the electrical energy will be converted 
into some other useful form of energy (say the light bulb, where part of it will be converted into light). In that ease, we 
want the resistance to be as small as possible. For a given length and thickness of wire, the lowest resistance is to be 
found in copper and silver. Since copper is much the cheaper of the two, it is copper that is commonly used as electrical 
wiring.   
  
    For really long distance transport of electricity, even copper becomes prohibitively expensive, and the third choice, the 
much cheaper aluminum, can be used. Actually, this is not bad at all, even though the resistivity of aluminum is 1.7 times 
as high as that of copper. The higher resistivity can be balanced by the fact that aluminum is only one-third as dense as 
copper, so a length, of aluminum wire 1 millimeter in thickness is no heavier than the same length of copper wire 0.6 
millimeters in thickness. Resistance decreases with increase in the cross-sectional area of the wire; consequently, the 
thicker aluminum wire actually possesses, less resistance than does the same weight of thinner (and considerably more 
expensive) copper wire.   
  
    On the other hand, it is sometimes desired that as much of the electrical energy as possible be converted into heat, as in 
electric irons, toasters, stoves, driers, and so on. Here one would like to have the resistance comparatively high (but not so 
high that a reasonable current intensity cannot be maintained). Use is often made of high-resistance alloys such as 
Nichrome.   
  
    Within a light bulb, very high temperatures are particularly desired, temperatures high enough to bring about the 
radiation of considerable quantities of visible light. There are few electrical conductors capable of, withstanding the high 

temperatures required; one of these is tungsten. Tungsten has a melting point of 33700C, which is ample for the purpose. 
However, its resistivity is only 1/20 that of Nichrome. To increase the resistance of the tungsten used, the filament in the 
light bulb must be both thin and long.   
  
    (At the high temperature of the incandescent tungsten filament, tungsten would combine at once with the oxygen of the 
air and be consumed. For this reason, light bulbs were evacuated in the early days of incandescent lighting. In the 
vacuum, however, the thin tungsten wires evaporated too rapidly and had a limited lifetime. To combat this, it became 
customary to fill the bulb with an inert gas, first nitrogen, and later on, argon. These gases did not react with even white-
hot tungsten, and the gas pressure minimized evaporation and extended the life of the bulbs.)   



  
    Circuits   
  
    Suppose that a current is made to flow through a conductor with a resistance (R) of 100 ohms. Having passed through 
this, it is next led through one with a resistance (R') of 50 ohms, and then through one with a resistance (R") of 30 ohms. 
We will speak of each of these items merely as "resistances." and for simplicity's sake we will suppose that the resistance 
of the conducting materials other then these three items is negligible and may be ignored.   
  
    Such resistances am in series: the entire current must pass first through one, then through the second, then through the 
third. It is clear that the effect is the same as though the current had passed through a single resistance of 100 + 50 + 30, 
or 180 ohms. Whenever items are connected in series so that a current passes through all, the total resistance is equal to 
the sum of the separate resistances.   
  
    If we are using household current with a potential difference of 120 volts, and if we assume that R, R' and R" are the 
only resistances through which current is passing, then we can use Ohm's law to find the current intensity passing through 
the resistances. The total resistance is 180 ohms, and since I=E/R, the current intensity is equal to 120 volts divided by 
180 ohms, or 2/3 amperes. All the current passes through all the resistances, and its intensity must be the same 
throughout.   
  
    Ohm's law can be applied to part of a system through which electricity is flowing, as well as to all of the system. For 
instance, what is the potential difference across the first of our three resistances, R? Its resistance is given as 100 ohms, 
and we have calculated that the current intensity within it (as well as within all other parts of the system in series) is 2/3 
amperes. By Ohm's law, E=IR, so the potential drop across the first resistance is 100 ohms multiplied by 2/3 amperes, or 
66 2/3 volts. Across the second resistance, R', it would be 50 ohms multiplied by 2/3 amperes, or 33 1/3-volts. Across the 
third resistance, R", it is 30 ohms time 2/3 amperes, or 20 volts. The total potential difference is 66 2/3 + 33 1/3 + 20, or 
12O volts. Whenever items are in series, the total potential difference across all is equal to the sum of the potential 
differences across each separately.   
  
    Suppose that a fourth resistance is added to the series--one, let us say, of 60,000,000,000,000 ohms. The other 
resistances would add so little to this that they could be ignored. The current intensity would be 120 volts divided by 60 
trillion ohms, or two trillionths of an ampere intensity so small we might just as well say that no current is flowing at all.   
  



    If two conductors are separated by a sizable air gap, current does not flow since the air gap has an extremely high 
resistance. For current to flow through conductors, there must be no significant air gaps. The current must travel along an 
unbroken path of reasonably conducting materials, all the way from one pole of a chemical cell (or other source of 
electricity) to the other pole. The pathway, having left the cell, must circle back to it, so one speaks of electric circuits.   
  
    If an air gap is inserted anywhere in a circuit made up of objects in series, a high resistance is added and the current 
virtually ceases. The circuit is "opened" or "broken." If the air gap is removed, the current Rows again and the circuit is 
"closed." Electric outlets in the wall involve no current flow if left unplugged, because an air gap exists between the two 
"terminals." This air gap is closed when an appliance is plugged in. An appliance is usually equipped, however, with an 
air gap within itself, so that even after it is plugged in, current will not flow. It is only when a switch is thrown or a knob 
is turned, and that second air-gap ii· also closed, that significant current finally starts to flow.   
  
    It may be desirable to form an air gap suddenly. There are conditions under which the current intensity through a 
particular circuit may rise to undesirable heights. As the current intensity goes up, the rate of energy expenditure and, 
therefore, the rate at which heat may develop, increases as the square of that intensity (see Equation 11-8). The heat may 
be sufficient to damage an electrical appliance or to set fire to inflammable material in the neighborhood,   
  
    To guard against this it is customary to include in the circuits some crucial point in series, a strip of low-melting alloy. 
A synonym for "melt" is "fuse," so such a low-melting material is a "fusible alloy." The little device containing a strip of 
such alloy is therefore an electric fuse. A rise in current intensity past some limit marked on the fuse (a limit of 15 
amperes on one common type of household fuse, for instance) will produce enough heat to melt the alloy and introduce 
an air gap in the circuit. The current is stopped till the fuse is replaced, of course, if the fuse is "blown" repeatedly, it is 
wise to have the circuit checked in order to see what is wrong.   
  
    When objects are in series within the circuit, the whole electric current passing through the first, passes through each of 
the succeeding objects consecutively. It is possible, though, that the current may have alternate routes in going from point 
A to point B, which may, for instance, be separately connected by the three different resistances, R, R', and R", which I 
mentioned earlier as being of 100, 50 and 30 ohms respectively. The current flows in response to the potential difference 
between points A and B, and that has to be the same, regardless of the route taken by the current. (Thus, in going from the 
twelfth floor to the tenth floor of a building, the change in gravitational potential--two floors--is the same whether the 
descent is by way of the stairs, an elevator, or a rope suspended down the stairwell.)   
  



    Since under such circumstances the three resistances are usually shown, in diagrams, in parallel arrangement, they are 
said to be in parallel. We can then say that when objects are placed in parallel within an electric circuit, the potential drop 
is the same across each object.   
  
    It is easy to calculate the current intensity in each resistance under these circumstances, since the potential difference 
and resistance are known for each. If household current is used, with a potential difference of 120 volts, then that is the 
potential difference across each of the three resistances in parallel. Since by Ohm's law, I = E/R, the current intensity in 
the first resistance is 120/100, or 1.2 amperes, that in the second is 120/50, or 2.4 amperes, and that in the third is 120/30, 
or 4 amperes.   
  
    As you see, there is an inverse relationship between current intensity and resistance among objects in parallel. Since 
the reciprocal of resistance is conductance (C = 1/R), we can also say that the current intensity in objects in parallel is 
directly proportional to the conductances of the objects.   
  
    Imagine, a long wire stretching from point A to point B and arranged in a nearly closed loop so that points A and B, 
though separated by several meters of wire, are also separated by 1 centimeter of air gap. The wire and the air gap may be 
considered as being arranged in parallel. That is, current may flow from A to B through the long wire or across the short 
air gap. The resistance of the column of air between the points is, however, much greater than that of the long wire, and 
only a vanishingly small current intensity will be found in the air between the two points. For all practical purposes, all 
the current flows through the wire.   
  
    If the air gap is made smaller, however, the total resistance of the shortening column of air between A and B decreases, 
and more and more current intensity is to be found there. The passage of current serves to knock electrons out of atoms in 
the air, thus increasing the ability of air to conduct electricity by means of those electrons and the positively-charged ions 
the electrons leave behind. As a result, the resistance across the air gap further de- creases. At some crucial point, this 
vicious cycle of current causing ions causing more current causing more ions builds rapidly to the point where current can 
be transferred through the air in large quantity, producing the spark and crackle that attracted such attention in the case of 
the Leyden jar. Since the current takes the shortcut from point A to B, we speak of a short circuit. The wire from A to B, 
plus any appliances or other objects in series along that wire, is no longer on the route of the current, and the electricity 
has been shut off.   
  
    When a short circuit takes place so that a sizable portion of what had previously been the total circuit is cut out, there is 



a sudden decline in the total resistance of the circuit. The resistance across the sparking air gap is now very low, probably 
much lower than that of the wire and its appliances. There is a correspondingly higher current intensity in what remains 
of the circuit, and consequently, more heat develops. The best that can then happen is that the fuse blows. If there is any 
delay in this, then the sparks forming across the air gap may well set fire to anything inflammable that happens to be in 
the vicinity.   
  
    To minimize the possibility of short circuits, it is customary to wrap wires in insulation--silk, rubber, plastic, and so on. 
Not only do these substances have higher resistivities than air, but being solid, they set limits to the close approach of two 
wires, which remain always separated (even when pressed forcefully together) by the thickness of the insulation. When 
insulation is worn, however, and faults or cracks appear, short circuits become all too possible.   
  
    If we return to our three resistances in parallel, we might ask what the total resistance of the system is. We know the 
total current intensity in the system, since that is clearly the sum of the current intensities in each part of the system. The 
total current intensity in the particular case we have been considering would be 1.2 + 2.4 + 4.0 = 7.6 amperes. The 
potential difference from A to B over any or all the routes in parallel is 120 volts. Since, by Ohm's law, R = E/I, the total 
resistance from A to B is 120 volts divided by the total current intensity, or 7.6 amperes. The total resistance, then, is 
120/7.6, or just a little less than 16 ohms.   
  
    Notice that the total resistance is less than that of any one of the three resistances taken separately. To see why this 
should be, consider the Ohm's law relationship, R(t) = E / I (t), as applied to a set of objects in parallel. Here R(t) 
represents the total resistance and I, the total current intensity; E, of course, is the same whether one of the objects or all 
of them are taken. The current intensity is equal to the sum of the current intensities (I, I' and I") in the individual items. 
We can then say that:  
  
          R (t) =  E / [ I + I’ + I’’]                                                                 (Equation 11-9)  
  
If we take the reciprocal of each side, then:  
  
1/R(t)  =   [ I + I’ + I’’]   / E    =  I / E  +   I’ / E  + I’’ / E      (Equation 11-10)                                                           
  
    By Ohm's law, we would expect I E to equal R.  E to equal R', and I"·E to equal R", the individual resistances of the 
items in parallel. Therefore:  



                 1/R(t)  = 1/R   + 1/R’  + 1/R’’                                    (Equation 11-11) 
  
    We are dealing with reciprocals in Equation 11-11. We can say, for instance, that the reciprocal of the total resistance 
is the sum of the reciprocals of the individual resistances. It so happens that the lower the value of a quantity, the higher 
the value of its reciprocal, and vice versa. Thus, since the reciprocal of the total resistance (1/R’) is the sum of the 
reciprocals of the separate resistances and therefore larger than any of the reciprocals of the separate resistances, the total 
resistance itself R(t) must be smaller than any of the separate resistances themselves.   
  
    An important property of arrangements in parallel is this: If there is a break in the circuit somewhere in the parallel 
arrangement, the electricity ceases only in that branch of the arrangement in which tile break occurs. Current continues to 
how in the remaining routes from A to B. Because parallel arrangements are very common, a given electric outlet can be 
used even though all others remain open. Parallel arrangements also explain why a light bulb can burn out (forming an air 
gap in place of the filament) without causing all other light bulbs to go out.   
  
    Batteries   
  
    Throughout the first half of the nineteenth century, the chief source of electric current was the chemical cell, and 
though this has long since yielded pride of place as far as sheer work load is concerned, it remains popular and, indeed, 
virtually irreplaceable for many special tasks.   
  
    A very common type of electric cell used nowadays has as its negative pole a cup of metallic zinc, and as its positive 
pole, a rod of carbon embedded in manganese dioxide. Between the two is a solution of ammonium chloride and zinc 
chloride in water. Starch is added to the solution in quantities sufficient to form a stiff paste so that the solution will not 
flow and the cell is made "unspillable." The unspillability is so impressive a characteristic that the device is commonly 
called a dry cell. It is also called a "flashlight battery" because it is so commonly used in flashlights. It may even be called 
a Leclanche cell because the zinc-carbon combination was first devised in 1868 by the French chemist Georges 
Leclanche (1839-1882), though it was not until twenty years later that it was convened into its "dry" form.   
  
    The potential difference between the positive and negative poles of a chemical cell depends upon the nature of the 
chemical reactions taking place--that is, on the strength of the tendency of the substances making up the poles to gain or 
lose electrons. In the case of the dry cell, the potential difference is, ideally, 1.5 volts. 
  



     The potential difference can be raised if two or more cells are connected in series-that is, if the positive pole of one 
cell is connected to the negative pole of the next cell in line. In that case, current flowing out of the first cell under the 
driving force of a potential difference of 1.5 volts enters the second cell and gives that much of a "push" to the current 
being generated there. The current put out by the second cell is therefore driven by its own potential difference of 1.5 
volts plus the potential difference of the cell to which it is connected- 3.0 volts altogether. In general, when cells are 
connected in series so that all the current travels through each one, the total potential difference is equal to the sum of the 
potential differences of the individual cells.   
  
    Cells might also be connected in parallel--that is, all the positive poles would be wired together and all the negative 
poles would be wired together. The total current does not pass through each cell. Rather, each cell contributes its own 
share of the current and receives back its own share, so the potential difference of one has no effect on that of another. 
There are advantages, however, in having 1.5 volts supplied by ten cells rather than by one. For one thing, the total 
amount of zinc in ten cells is ten rimes greater than in one, and the ten-cell combination will continue delivering current 
for ten times as long.   
  
    Then, too, there is the question of internal resistance of a battery. When current is flowing, it flows not only through 
the wires and devices that make up the circuit connecting positive pole to negative pole, it must also flow from pole to 
pole within the cell by way of the chemical reactions proceeding there. The internal resistance is the resistance to this 
electric how within the cell. The greater the current intensity withdrawn from the cell, the greater, too, the current 
intensity that must flow through the cell. The potential difference required to drive this current through the cell depends 
on the current intensity, for (by Ohm's law) E = I x R x R, in this case, is the internal resistance of the cell, and E is the 
potential difference driving the current from negative to positive pole (using the electrician's convention). This potential 
difference is the direction opposite to that driving the current from the positive pole to the negative in the external circuit 
outside the cell, so the internal potential difference must be subtracted from the external one. In short, as you draw more 
and more current intensity from a cell, the potential difference it delivers drops and drops, thanks to internal resistance.   
  
    When cells are arranged in series, the internal resistance of the series is the sum of the internal resistance of the 
individual cells. The potential difference may go up, but ten cells in series will be as sensitive to high current intensities 
as one cell would be. When cells are arranged in parallel, however, the total internal resistance of the cells in the system 
is less than is that of any single cell included, just as in the case of ordinary resistances. A cell system in parallel can 
therefore delver larger current intensities without significant drop in potential difference than a single cell could, although 
the maximum potential difference is no higher.   



  
    Electric cells of various sons have been an incalculable boon to technological advance and are still extremely useful. 
Not only flashlights but also a variety of devices from children's toys to radios can be powered by electric cells. Chemists 
like Davy even used them for important scientific advances requiring the delivery of fairly large amounts of electrical 
power. However, the really large scale uses of electricity, such as that of powering huge factories and lighting whole 
cities, simply cannot be done by piling together millions of electric cells. The expense would be prohibitive.   
  
    The dry cell, for instance, obtains its energy by converting metallic zinc-to-zinc ions. Chemically, this is the equivalent 
of burning zinc--of using zinc as a fuel. When a dry cell is delivering 1 ampere of current, it consumes 1.2 grams of zinc 
in one hour. In that one hour, the power delivered by the battery would be 1.5 volts times 1 ampere, or 1.5 watts. 
Therefore 1.5 watt-hours is equivalent to the consumption of 1.2 grams of zinc, and 1 kilowatt-hour (1000 watt-hours) is 
equivalent to the consumption of 800 grams of zinc. A typical modern American household would, at the rate it consumes 
electricity, easily consume eight tons of zinc per year if dry cells were its source of supply (to say nothing of the other 
components involved.) Not only would this be ridiculously expensive, but also the world's production of zinc could not 
maintain an economy in which individual families consumed the metal at this rate. In fact, it is fair to say that our modern 
electrified world simply could not exist on a foundation of ordinary chemical cells.  
  
    One way of reducing the expense might be to devise some method of reversing the chemical reactions in a cell so that 
the original pole-substances might be used over again. This is not practical for the dry cell, but chargeable batteries do 
exist. The most common variety is one in which the negative pole is metallic lead and the positive pole is lead peroxide. 
These are separated by a fairly strong solution of sulfuric acid.   
  
    When such a cell is discharging, and an electric current is drawn off from it (at a potential difference of about 2 volts 
for an individual cell), the chemical reactions that proceed within it convert both the lead and -the lead peroxide into lead 
sulfate. In the process, the sulfuric acid is consumed, too. If electricity is forced back into the cell (that is, if the negative 
pole of an electric source, working at a potential difference of more than 2 volts, is connected to the negative pole of the 
cell and the positive pole of the source is connected to the positive pole of the cell so that the cell is forced to "work 
backward" by a push that is stronger than its own), the chemical reaction goes into reverse. Lead and lead peroxide are 
formed once again, and the sulfuric acid solution grows stronger. The cell is "recharged." Such a cell was first devised in 
1859 by the French physicist Gaston Plante (1834-1889).  
  
    In a superficial sense, it would seem that as the cell is recharged, electricity pours into the cell and is stored there. 



Actually, this is not so. Electricity is not directly stored; instead a chemical reaction is carried through producing 
chemicals that can then react to generate electricity. Thus it is chemical energy that is stored, and such chargeable cells 
are called storage batteries. It is these (usually consisting of three to six lead-plus-lead-peroxide cells in series) that are 
present under the hood of automobiles.   
  
    Such a storage battery is heavy (because of the lead), dangerous to handle (because of the sulfuric acid), and expensive. 
Nevertheless, because it can be recharged over and over, the same battery can be used for years without replacement 
under conditions where heavy demands are periodically made upon it. Its useful- ness, therefore, is not to be denied.   
  
    Yet where does the electricity come from that is used to recharge the storage battery? If such electricity is drawn from 
ordinary non-rechargeable cells, we are back where we started from. Clearly, in order to make it possible to use storage 
batteries on a large scale, the electricity used to charge it must have a much cheaper and more easily available source, in 
the automobile, for instance, the storage battery is continually being recharged at the expense of the energy of burning 
gasoline--which, while not exactly dirt-cheap, is certainly much cheaper and more available than the energy of burning 
zinc.   
  
    To explain how it is that burning gasoline can give rise to electric power, we must begin with a simple but crucial 
experiment conducted in 1819.  
  
   
  

CHAPTER 12 

  

Electromagnetism 

  
    Oersted’s Experiment   
  
    Until the beginning of the nineteenth century, electricity and magnetism had seemed two entirely independent forces. 
To be sure, both were strong forces, both showed repulsion as well as attraction, and both weakened with distance 
according to an inverse square law. On the other hand, magnetism seemed to involve only iron plus (weakly) a few other 
substances, while electricity seemed universal in its effects; magnetism displayed poles in pairs only, while electricity 



displayed them in separation; and there was no flow of magnetic poles as there was a flow of electric charge, The balance 
seemed to be more in favor of the differences than the likenesses.   
  
    The matter was settled in 1819, however, as a result of a simple experiment conducted in the course of a lecture (and 
without any expectation of great events to come) by a Danish physicist, Hans Christian Oersted (1777-1851). He had 
been using a strong battery in his lecture, and he closed by placing a current- carrying- wire over a compass in such a way 
as to have the wire parallel to the north-south alignment of the compass needle. (It is not certain now what point he was 
trying to make in doing this.)   
  
    However, when he put the wire over the needle, the needle turned violently, as though, thanks to the presence of the 
current, it now wanted to orient itself east-west. Oersted, surprised, carried the matter further by inverting the flow of 
current--that is, he connected the wire to the electrodes in reverse manner. Now the compass needle turned violently 
again, but in the opposite sense.   
  
    As soon as Oersted announced this, physicists all over Europe began to carry out further experimentation, and it 
quickly became plain that electricity and magnetism were intimately related, and that one might well speak of 
electromagnetism in referring to the manner in which one of the two forces gave rise to the other.   
  
    The French physicist Dominique Franfois Jean Arago (1786-1853) showed almost at once that a wire carrying an 
electric current attracted not only magnetized needles but ordinary un-magnetized iron filings, just as a straightforward 
magnet would. A magnetic force, indistinguishable from that of ordinary magnets, originated in the electric current. 
Indeed, a flow of electric current was a magnet.   
  
    To show this more dramatically, it was possible to do away with iron, either magnetized or un-magnetized, altogether. 
If two magnets attracted each other or repelled each other (depending on how their poles were oriented), then the same 
should be true of two wires, each carrying an electric current.   
  
    This was indeed demonstrated in 1820 by the French physicist Ampere, after whom the unit of current intensity was 
named. Ampere began with two parallel wires, each connected to a separate battery. One wire was fixed, while the other 
was capable of sliding toward its neighbor or away from it. When the current was traveling in the same direction in both 
wires, the movable wire slid toward the other, indicating an attraction between the wins. If the current traveled in 
opposite directions in the two wires, the movable win slid away, indicating repulsion between the two wires. 



Furthermore, it Ampere arranged matters so that the movable win was free to rotate, it did so when the current was in 
opposite directions, turning through 180 degrees until the two wires were parallel again with the current in each now 
flowing in the same direction. (This is analogous to the manner in which, if the north pole of one small magnet is brought 
near the north pole of another, the second magnet will hip so as to present its south pole end to the approaching north 
pole.)   
  
    Again, if a flowing current is a magnet, it should exhibit magnetic lines of force as an ordinary magnet does and these 
lines of force should be followed by a compass needle. Since the compass needle tends to align itself in a direction 
perpendicular to that of the flow of current in the wire (whether the needle is held above or below the wire, or to either 
side), it would seem that the magnetic lines of force about a current-carrying wire appear in the form of concentric 
cylinders about the wire. If a cross section is taken perpendicularly through the wire, the lines of force will appear as 
concentric circles. This can be demonstrated by running a current-carrying wire upward through a small hole in a 
horizontal piece of cardboard. If iron filings are sprinkled on the cardboard and the cardboard is tapped, the filings will 
align themselves in a circular arrangement about the wire.   
  
    In the case of an ordinary magnet, the lines of force are considered to have a direction - one that travels from a north 
pole to a south pole. Since the north pole of a compass needle always points to the south pole of a magnet, it always 
points in the conventionally accepted direction of the lines of force. The direction of the north pole of a compass needle 
also indicates the direction of the lines of force in the neighborhood of a current-carrying wire, and this turns out to 
depend on the direction of the current-flow.   
  
    Ampere accepted Franklin's convention of current-flow from the positive electrode to the negative electrode. If, using 
this convention, a wire were held so that the current flowed directly toward you, the lines of force, as explored by a 
compass needle, would be moving around the wire in counterclockwise circles. It the current is flowing directly away 
from you, the lines of force would be moving around the win in clockwise circles.   
  
    As an aid to memory, Ampere advanced what has ever since been called the "right-hand screw rule." Imagine yourself 
holding the current-carrying wire with your right hand; the fingers close about it and the thumb points along the wire in 
the direction in which the current is flowing. If you do that, then the sweep of the curving fingers, from palm to 
fingernails, indicates the direction of the magnetic lines of force. (It is quite possible to make use of the direction of 
electron flow instead of that of the conventional current. The electron flow is in the direction opposite to that of the 
current, so that if you use the same device but imagine yourself to be seizing the wire with the left hand rather than the 



right, and the thumb in the direction of the electron flow, the fingers will still mark out the lines of force).   
  
    Just as a magnet can come in a variety of shapes and by no means need be restricted in form to that of a simple bar, so 
a current-carrying win can come in a variety of shapes. For instance, the wire can be twisted into a loop. When that 
happens, the lines of force outside the loop are pulled apart, while those inside the loop crowded together. In other words, 
the magnetic field is stronger inside the loop than outside.   
  
    Now suppose that instead of one loop, the wire is twisted into a number of loops, so that it looks like a bedspring. Such 
a shape is called a helix or solenoid (the latter word from a Greek expansion meaning “Pipe-shaped"). In such a solenoid, 
the lines of force of each loop would reinforce those of its neighbor in such a way that the net result is a set of lines of 
force that sweep round the exterior of the entire solenoid from one end to the other. They then enter the interior of the 
solenoid to return to the first end again. The more individual loops or coils in the solenoid, the greater the reinforcement 
and the more lines of force are crowded into the interior. If the coils are pushed closed together, the reinforcement is more 
efficient, and again the magnetic flux increases in the interior of the solenoid.   
  
    In other words, the flux within the solenoid varies directly with the number of coils (N) and inversely with the length 
(L). It is proportional then to N/L. The strength of the magnetic field produced by a flowing current depends also on the 
current intensity. A 2-ampere current will produce twice the magnetic force at a given distance from the wire that a 1-
ampere current will. In the case of the solenoid, then, we have the following relationship for a magnetic field that is 
virtually uniform in strength through the interior:  
  
H  = [1.25 N I ] / L                                       (Equation 12-1)  
  
where H is the strength of the magnetic field in oersteds, I the current intensity in amperes, N the number of turns in the 
solenoid, and L the length of the solenoid in centimeters.   
  
    The relationship between the strength of the magnetic field and the current intensity makes it possible to define the 
ampere in terms of the magnetic forces set up. If, in two long straight parallel conductors, one meter apart in air, constant 

and equal currents are flowing so as to produce a mutual force (either attractive or repulsive) of 2 X 10-7 newtons per 
meter of length, those currents have an intensity of 1 ampere. In this way, the ampere can be defined on the basis of 
mechanical units only, and all other electrical units can then be defined in terms of the ampere. (It was because Ampere's 
work made it possible to supply such a mechanical definition of an electrical unit that his name was given to the unit.)    



  
    A solenoid behaves as though it were a bar magnet made out of air. This, of course, suggests that in ordinary bar 
magnets there is a situation that is analogous to the looping electric current of the solenoid. It was not until the twentieth 
century, however, that the existence of the electron and its relationship to the atom came to be well enough understood to 
make that thought more than a vague speculation. Only then could ordinary magnetism be pictured as the result of 
spinning electron charge within atoms. In some cases, electron spins within atoms can be balanced, as some spin 
clockwise and some counter clock wise in such a fashion that no net magnetic force is to be observed. In other cases, 
notably ht that of iron, the spins are not balanced and the magnetic force can make itself quite evident if the atoms 
themselves are properly aligned.   
  
    Furthermore, this offers the possibility of explaining the earth's magnetism. Even granted that the earth's liquid iron is 
at a temperature above the Curie point and be an ordinary magnet, it is nevertheless possible that tee rotation sets up slow 
eddies in that liquid core, that electric is carried about in those eddies, and that the earth's core behaves as a solenoid 
rather as a bar magnet. The effect would be the same. 
  
    If this is so, a planet that does not have a liquid core that can carry eddies, or that does not rotate rapidly enough to set 
eddies into motion, ought not to have much, if any, magnetic field. So far, the facts gathered by contemporary rocket 
experiments seem to bear this out. The density of the moon is only three- fifths that of the earth, which makes it seem 
likely that the moon does not have any high-density liquid iron core of significant and lunar probes have made it plain 
that the moon has, indeed no significant magnetic field.  
  
    Venus, on the other hand, is very like the earth in size and density and therefore is quite likely to have a liquid iron 
core. However, astronomical data gained in the 1960's make it appear likely that Venus rotates slowly indeed, perhaps 
only once in 200- plus days. And Venus, too, according to observations of the Mariner II Venus-probe, lacks a significant 
magnetic field.   
  
    Jupiter and Saturn, which are much larger than the earth, nevertheless rotate more rapidly and possess magnetic fields 
far more intense than that of the earth.   
     
       The sun itself is fluid throughout, though gaseous rather than liquid, and as the result of its rotation, eddies are 
undoubtedly set up. It is possible that such eddies account for the magnetic field of the sun, which makes itself most 
evident in connection with the sunspots. Stars have been located with magnetic fields much more intense than that of the 



sun, and the galaxies themselves are thought to have galaxy-wide magnetic fields.   
  
 Application of Electromagnetism            
  
      The strength of the magnetic field within a solenoid can be increased still further by inserting a bar of iron into it. The 
high permeability of iron will concentrate the already crowded lines of force even more. The first to attempt this was an 
English experimenter, William Sturgeon (1783-1850), who in 1823 wrapped eighteen turns of bare copper wire about a 
U-shaped bar and produced an electromagnet. With the current on, Sturgeon's electromagnet could lift twenty times its 
own weight of iron. With the current off it was no longer a magnet and would lift nothing. 
  
     The electromagnet came into its own: however, with the work of the American physicist Joseph· Henry (1797-1878). 
In 1829, he repeated Sturgeon's work, using insulated wire. Once the wire was insulated it was possible to wind it as 
closely as possible without fear of short circuits from one wire across to the next. Henry could therefore use hundreds of 
turns in a short length thus vastly increasing the ratio N / L (see Equation 12-1) and correspondingly increasing the 
strength of the magnetic field for        a given current intensity. By 1831, he had produced an electro magnet, of no great 
size, that could lift over a ton of iron.                
  
    In fact, electromagnetism made possible the production of magnetic fields of unprecedented strength. A toy horseshoe 
magnet can produce a magnetic field of a few hundred gauss in strength - a good bar magnet can produce one of 3000 
gauss, and an excellent one a field of 10,000 gauss. With an electromagnet, however, fields of 60,000 gauss are easily 
obtainable.                           
  
    To go still higher is in theory no problem, since one need only increase the current intensity. Unfortunately this also 
increases the heat produced (heat increases as the square of the current        intensity). So the problem of cooling the coils 
soon becomes an extremely critical one. In addition, the magnetic forces set up large mechanical strains. By the twentieth 
century, designing and the use of strong materials had made possible the production of temporary fields in the hundreds 
of thousands of gauss by means of briefly pulsing electric currents, There was even the momentary production of fields of 
a million and half gauss while the conducting material was exploding. 
   
   Such intense magnetic fields require the continuing use of enormous electric currents and lavish cooling setups. They 
are therefore exorbitantly expensive. The possibility arose of avoiding much of this expense by taking advantage of the 
phenomenon of superconductivity. If certain conductors are cooled to liquid helium temperatures, their resistance drops 



to zero, so that current flowing through them develops no heat at all no matter how high the current intensity. 
Furthermore, an electric current set up in a closed circuit at such temperatures continues flowing forever, and a magnetic 
held set up in association with it also maintains itself forever (or at least as long as the temperature is maintained 
sufficiently low). In other words, the magnetic field need not be maintained at the expense of a continuous input of 
current. 
  
       If a superconductive material is used as the windings about an iron core and the whole is kept at liquid helium 
temperatures, it might seem that by pumping more and more electricity into it, higher and higher magnetic field strengths 
could be built up without limit, and that when a desired level is reached, current can be shut off and the field left there 
permanently. 
  
   Unfortunately, superconductivity will not quite open the door in that fashion. A superconductive material is perfectly 
diamagnetic - that is, no magnetic lines of force at all will enter the interior of the superconductive material. The two 
properties - superconductivity and perfect diamagnetism--are bound together. If more and more current is pumped into a 
superconductive electromagnet and the magnetic field strength is built higher and higher, the magnetic flux mounts. The 
lines of force crowd more and more densely together, and at some point (the critical field strength) they are forced into 
the interior of the superconductive material. As soon as the material loses its perfect diamagnetism, it also loses its 
superconductivity; heat development starts, and the whole process fails. A superconductive magnet cannot be stronger 
than the critical field strength of the material making up the coils, and unfortunately, this is in the mere hundreds of gauss 
for most metals. Lead, for instance, will lose its superconductivity at even the lowest possible temperatures in a magnetic 
held of 600 gauss. Superconductive magnets of lead can therefore be built no stronger than a toy.  
  
    Fortunately, it was discovered in the 1950's that much more could be done with alloys than with pure metals. For 
instance, an alloy of niobium and tin can maintain superconductivity at liquid helium temperatures even while carrying 
enough current to produce a continuous and relatively cheap magnetic field in excess of 200,000 gauss, while an alloy of 
vanadium and gallium may do several times as well. The age of high-intensity superconducting electromagnets would 
seem to be upon us.   
  
    The electromagnet is fit for more than feats of brute strength, however. Consider a circuit that includes an 
electromagnet. There is a key in the circuit that is ordinarily, through some spring action, kept in an open position, so that 
an air gap is continuously present and no current flows through the circuit. If the key is depressed by hand so that the 
circuit is closed, the current flows and the electromagnet exerts an attracting force upon a bar of iron near it.   



  
    However, suppose this bar of iron is itself part of the circuit and that when it is attracted to the electromagnet it is 
pulled away from a connection it makes with the remainder of the circuit. The circuit is broken and the current stops. As 
soon as the current stops, however, the electromagnet is no longer exerting an attracting force, and the iron bar is pulled 
back to its original position by an attached spring. Since this closes the circuit again, the electromagnet snaps into action 
and pulls the iron bar toward itself again.   
  
    As long as the key remains depressed, this alternation of the iron bar being pulled to the magnet and snapping back to 
the circuit will continue. In itself this will make a rapid buzzing sound, and the result is, indeed, what is commonly called 
a 'buzzer." If a clapper that strikes a hemisphere of metal is attached to the iron bar, we have an electric bell,   
  
    But suppose the iron bar is not itself part of the circuit. In that case, when the key is depressed the electromagnet gains 
attracting power and pulls the bar to itself and keeps it there. Once the key is released (and not until then), the 
electromagnet loses its attracting force and the bar snaps back.   
  
    The iron bar, under these circumstances, snaps back and forth, not in one unvarying rapid pattern of oscillation, but in 
whatever pattern one cares to impose upon the key as it is depressed and released. The iron bar makes a clicking sound as 
it strikes the magnet, and the pattern of the hand's movement upon the key is transformed into a pattern of clicks at the 
electromagnet.   
  
    It might occur to anyone that this could be used as the basis of a code. By letting a particular click pattern stand for 
particular letters of the alphabet, a message could be sent from one place to another at near the speed of light.    
  
    The practical catch is that the current intensity that can be pushed through a wire under a given potential difference 
decreases as the wire lengthens and its total resistance increases. Over really long distances, the current intensity declines 
to insignificance, unless prohibitive potential differences are involved, and is then not sufficient to produce a magnetic 
held strong enough to do the work of moving the heavy iron bar.   
  
    It was Henry who found a way to solve this problem. He ran current through a long wire until it was feeble indeed, but 
still strong enough to activate an electromagnet to the point where a lightweight key could be pulled toward it. This 
lightweight key, in moving toward the electromagnet, closed a second circuit that was powered by a battery reasonably 
near the key, so that a current was sent through a second, shorter wire. Thanks to the shortness of the second wire and its 



consequently smaller resistance, this current was much stronger than the first. However, this second stronger current 
mirrored the first, weaker current exactly, for when the original key was depressed by hand, the far-distant key was at 
once depressed by the electromagnet, and when the original key was released by hand, the far-distant key was at once 
released by the electromagnet.   
  
    Such a device, which passes on the pattern of a current from one circuit to another, is an electric relay. The second 
circuit may be, in its turn, a long one that carries just enough current intensity to activate a third circuit that, in turn, can 
just activate a far-distant fourth circuit. By using relays and batteries at regular intervals, there is nothing, in principle, to 
prevent one from sending a particular pattern of clicks around the world, By 1831, Henry was sending signals across a 
mile of wire.   
  
    Henry did not attempt to patent this or to develop it into a practical device. Instead, he helped an American artist. 
Samuel Finley Breese Morse (1791 - 1872) do so. By 1844, wires had been strung from Baltimore to Washington, and a 
pattern of clicks (reproduced as dots for short clicks and dashes for long ones--the "Morse code") was sent over it. The 
message was a quotation from the Bible's book of Numbers. "What hath God wrought?" This marks the invention of the 
telegraph (from Greek words meaning 'writing at a distance"), and the general public was for the first time made aware of 
how the new electrical science could be applied in a manner that would change man's way of life.   
  
    Eventually telegraph lines spanned continents, and by 1866 a cable had been laid across the Atlantic Ocean Through 
the cable, the Morse code could pass messages between Great Britain and the United States almost instantly. Laying the 
cable was a difficult and heartbreaking task, carried through only by the inhuman perseverance of the American financier 
Cyrus West Field (1819-1892). Its operation was also attended by enormous difficulties, since relays could not be set up 
at the bottom of the sea as they could be on land. Many problems had to be solved by such men as the British physicist 
William Thomson, Lord Kelvin (1824- 1907), and even so, intercontinental communication did not be come quite 
satisfactory until the invention of the radio (a matter which will be discussed in Volume III of this book). Nevertheless, 
by 1900 no civilized spot on earth was out of reach of the telegraph, and after thousands of years of civilization, mankind 
was for the first time capable of forming a single (if not always a mutually friendly or even mutually tolerant) 
community.   
  
    A more direct method of communication also depends in great part on the electromagnet. This is the telephone ("to 
speak at a distance"), invented in 1876 by a Scottish-American speech teacher, Alexander Graham Bell  (1847-1922), and 
shortly afterward improved by Edison.   



  
    To put it as simply as possible, the telephone transmitter (into which one speaks) contains carbon granules in a box 
bounded front and back by a conducting wall. The front wall is a rather thin and, therefore, flexible diaphragm. Through 
this box an electric current flows. The resistance of the carbon granules depends on how well they make contact with 
each other. The better the contact, the lower the overall resistance and (since the potential difference remains constant) 
the greater the current intensity flowing through it.   
  
    As one speaks into the transmitter, sound waves set up a complex pattern of compressions and rarefactions in the air. If 
a region of compression strikes the diaphragm making up the front end of the box of carbon granules, the diaphragm is 
pushed inward. When a region of rarefaction strikes it, it is pulled outward. It acts precisely as does the eardrum, and in 
its motion, mimics all the variations in the compression and rarefaction of the sound wave pattern.   
  
    When the diaphragm is pushed inward, the carbon granules make better contact, and the current intensity rises in 
proportion to the extent to which the diaphragm is pushed. Similarly, the current intensity falls, as the diaphragm is pulled 
outward, so that carbon granules fall apart and make poorer contact. Thus, an electric current is set up in which the 
intensity varies in precise imitation of the compression-rarefaction pattern of the sound wave.   
  
    At the other end of the circuit (which may be, thanks to relays and other refinements, thousands of miles away) the 
current activates an electromagnet in a telephone receiver. The strength of the magnetic field produced varies with the 
current intensity, so the strength of this field precisely mimics the sound wave pattern impinging upon the far-off 
transmitter. Near the electromagnet is a thin iron diaphragm that is pulled inward by the magnetic force in proportion to 
the strength of that force. The diaphragm in the receiver moves in a pattern that mimics the sound wave pattern impinging 
upon the transmitter many miles away and, in its turn, sets up a precisely similar sound wave pattern in the air adjoining 
it. The result is that the ear at the receiver hears exactly what the mouth at the transmitter is saying.   
  
    Examples of newer applications of electromagnets involve superconductivity. A disk, which is, itself superconductive 
might rest above a superconducting magnet. The magnetic lines of force will not enter the perfectly diamagnetic 
superconducting disk, which cannot, for that reason, maintain physical contact with the magnet. There must be room 
between the two superconducting materials to allow passage, so to speak, for the lines of force. The disk, therefore, is 
repelled by the magnet and floats above it. Even weights placed upon the disk will not (up to some certain limit) force it 
down into contact with the magnet. Under conditions worked with in the laboratory, disks capable of bearing weights up 
to 300 grams per square centimeter have been demonstrated. Without physical contact, the disk can rotate virtually 



frictionlessly and thus may serve as a frictionless bearing.   
  
    Tiny switches can be made by taking advantage of electro-magnetism under superconductive conditions. The first such 
device to be developed (as long ago as 1935) consisted of a thin wire of niobium about a thicker wire of tantalum. Both 
are superconducting materials, but they can be arranged to have different critical field strengths. A small current can be 
set up within the tantalum, for instance, and this will maintain itself indefinitely as long as the temperature is kept low. If 
an even smaller current is sent through the niobium coil about the tantalum, however, the magnetic field set up is 
sufficient to destroy the superconductivity of the tantalum (while not affecting that of the niobium). The current in the 
tantalum therefore ceases. In this way, one current can be switched off by another current.   
  
    Such a device is called a cryotron (from a Greek word meaning “to freeze," in reference to the extremely low 
temperatures required for superconductivity to evidence itself). Complex combinations of cryotrons have been made use 
of as versatile switching devices in computers. The advantage of cryotron switches art that they are very fast, very small, 
and consume very little energy. There is the disadvantage, of course, that they will only work at liquid helium 
temperatures.   
  
    Measurement of Current   
  
    The electromagnet introduced a new precision into the study of electricity itself. It made it possible to detect currents 
by the presence of the magnetic field they created and to estimate the current intensity by the strength of the magnetic 
held.   
  
    In 1820, following hard upon Oersted's announcement of the magnetic field that accompanied a flowing current, the 
German physicist Johann Salomo Christoph Schweigger (1779-1857) put that field to use as a measuring device. He 
placed a magnetized needle within a couple of loops of wire. When current Rowed in one direction, the needle was 
deflected to the right; when current flowed in the other direction, the needle was defected to the left. By placing a scale 
behind the needle, he could read off the amount of deflection and therefore estimate the current intensity. This was the 
first galvanometer ("to measure galvanic electricity"), a name suggested by Ampere.   
  
    Schweiggefs original galvanometer had a fixed coil of wire and a movable magnet, but with time it was found more 
convenient to have a fixed magnet and a movable coil. The device still depends on the deflection of a needle, but now the 
needle is attached to the coil rather than to the magnet A particularly practical device of this type was constructed in 1880 



by the French physicist Jacques Arstne d'Arsonval (1851-1940) and is known as a D'Alsonval galvanometer. 
  
    Galvanometers can be made sensitive enough to record extremely feeble current intensities. In 1903, the Dutch 
physiologist Willem Einthoven (1860-1927) invented a string galvanometer. This consisted of a very fine conducting 
fiber suspended in a magnetic held. Tiny currents flowing through the fiber would cause its deflection, and by means of 
such an extremely sensitive galvanometer, the small changes in current intensities set up in a contracting muscle could be 
detected and measured. In this way, the shifting electric pattern involved in the heartbeat could be studied, and an 
important diagnostic device was added to the armory of modern medicine.   
  
    Galvanometers, in fact, tend to be so sensitive that in unmodified form they may safely be used only for comparatively 
feeble current intensities. To measure the full intensity of an ordinary household current for instance, the galvanometer 
must be deliberately short-circuited. Instead of allowing all the current to flow through the moving coil in the 
galvanometer, a low-resistance conductor is placed across the wires leading in and out of the coil. This low-resistance 
short circuit is called a shunt. The was first used in 1843 by the English physicist Charles Wheatstone (1802-1874).   
  
    Shunt and coil are in parallel and the current intensity through each is in inverse proportion to their respective 
resistances. If the resistances are known, we can calculate what fraction of the current intensity will travel through the 
coil, and it is that fraction only that will influence the needle deflection. The sensitivity of the deflection can be altered by 
adding or subtracting resistances to the shunt, thus decreasing or increasing the fraction of the total current intensity 
passing through the coil.   
  
    By adjusting the fraction of the current intensity reaching the coil so that the deflected needle will remain on the scale, 
household current intensities or, in principle, current of any intensity, can be measured. The dial can be calibrated to read 
directly in amperes, and a galvanometer so calibrated is called an ammeter (a brief form of "ampere-meter").   
  
    Suppose a galvanometer is connected across some portion of a circuit, short-circuiting it. If this galvanometer includes 
a very high resistance, however, a current of very little intensity will flow over the short circuit through the galvanometer-
current of an intensity low enough nor to affect the remainder of the circuit in any significant way.   
  
    This small current intensity will be under the driving force of the same potential difference as will the current flowing 
in much greater Intensity through the regular route of the circuit between the points across which the galvanometer has 
been placed. The tiny current intensity driven through the high-resistance galvanometer will vary with the potential 



difference. The scale behind the moving needle can then be calibrated in volts, and the galvanometer becomes a 
voltmeter.  
  
    Once current intensity and potential difference through some circuit or portion of a circuit is measured by an ammeter 
and voltmeter, the resistance of that same circuit or portion of a circuit can be calculated by Ohm's law. However, with 
the help of a galvanometer, resistance can also be measured directly by balancing the unknown resistance against known 
resistances.   
  
      Suppose a current is flowing through four resistances—R(1), R(2),  R(3), and R(4), arranged in a parallelogram. 
Current enters at A and can flow either through B to D via R(1), and R(2),  or through C to via R(3),  and R(4). Suppose 
that a conducting wire connects B and C and that a galvanometer is included as part of that wire. If the current reaches B 
at a higher potential than it reaches C, current will flow from B to C and the galvanometer will register in one direction. If 
the reverse is true and the current reaches C at a higher potential than at B. current will flow from C to B and the 
galvanometer will register in the other direction. But if the potential at B and the potential at C are exactly equal, current 
will flow in neither direction and the galvanometer will register zero.   
  
    Suppose the galvanometer does register zero. What can we deduce from that? The current flowing from A to B must 
pass on, intact, from B to D; none is deflected cross the galvanometer. Therefore the current intensity from A to B 
through R, must be the same as the current intensity from B to D through R(2).  Both intensities can be represented as I
(1). By a similar argument, the current intensities passing through R(2),  and R(4), are equal and may be symbolized as I
(2).   
  
    By Ohm's law, potential difference is equal to current intensity times resistance ( E = I R ). The potential difference 
from A to B is therefore I(1)R(1); from B to D is I(1) R(2),; from A to C is I(2)R(3); and from C to D is I(2)R(4). 
  
    But if the galvanometer reads zero, then the potential difference from A to B is the same as from A to C (or current 
would flow between B and C and the galvanometer would not read zero), and the potential difference from B to D is the 
same as from C to D, by the same argument. In terms of current intensities and resistances, we can express the equalities 
in potential difference thus:  
  
I(1)R(1) = I(2)R(3)                             (Equation 12-2)  
  



 I(1)R(2) = I(2)R(4)                            (Equation 12-3)  
  
If we divide Equation 12-2 by Equation 12-3, we get:  
  
R(1) / R(2)   = R(3)  / R(4)                         (Equation 12-4)   
  
    Now suppose that R(1)  is the unknown resistance that we want to measure, while R(2) is a known resistance. As for R
(3)  and R(4)  they are variable resistances that can be varied through known steps.   
  
    A very simple variable resistance setup can consist of a length of wire stretched over a meter stick, with a sliding 
contact capable of moving along it. The sliding contact can represent point C in the device described above. The stretch 
of wire from end to end of the meter stick is AD. That portion stretching from A to C is R(3)  and the portion from C to D 
is R(4). If the wire is uniform, it is fair to assume that the resistances R(3) and R(4)  will be in proportion to the length of 
the wire from A to C and from C to D respectively, and those lengths can be read directly off the meter stick. The 
absolute values of R(3) and R(4) cannot be determined, but the ratio R(3) / R(4), is equal to AC/CD and that is all we 
need.   
  
    As the sliding contact is moved along the wire, the potential difference between A and C increases as the distance 
between the two points increases. At some point the potential difference between A and C will become equal to that 
between A and D. and the galvanometer will indicate that point by registering zero. At that point the ratio R(3) / R(4), can 
be determined directly from the meter stick, and the ratio R(1) / R(2), can, by Equation 12-4, be taken to have the same 
value.   
  
    The unknown resistance, R(1) can then easily be determined by multiplying the known resistance R(2) by the known 
ratio R(3) / R(4). Wheatstone used this device to measure resistances in 1843, and (although some researchers had used 
similar instruments before him) it has been called the Wheatstone bridge ever since.   
  
    Generators   
  
    The electromagnet, however useful, does not in itself solve the problem of finding a cheap source of electricity. If the 
magnetic field must be set up through the action of a chemical cell, the field will remain as expensive as the electric 
current that sets it up, and large-scale us will be out of the question.   



  
    However, the manner in which an electromagnet was termed was bound to raise the question of the possibility of the 
reverse phenomenon. It an electric current produces a magnetic field, might not a magnetic field already in existence be 
used to set up an electric current?   
  
    Michael Faraday thought so, and in 1831 he attempted a crucial experiment (after having tried and failed four times 
before). In this fifth attempt, he wound a coil of wire around one segment of an iron ring, added a key with which to open 
and close the circuit, and attached a battery. Now when he pressed the key and closed the circuit, an electric current 
would how through the coil and set up a magnetic field. The magnetic lines of force would be concentrated in the highly 
permeable iron ring in the usual fashion.   
  
    Next, he wound another coil of wire about the opposite segment of the iron ring and connected that coil to a 
galvanometer. When he set up the magnetic field, it might start a current flowing in the second wire and that current, if 
present, would be detected by the galvanometer.   
  
    The experiment did not work as he expected it to. When he closed the circuit there was a momentary surge of current 
through the second wire, as was indicated by a quick deflection of the galvanometer needle followed by a return to a zero 
reading. The zero reading was then maintained however long the key remained depressed. There was a magnetic field in 
existence and it was concentrated in the iron ring, as could easily be demonstrated. However, the mere existence of the 
magnetic field did not in itself produce a current. Yet when Faraday opened the circuit again, there was a second quick 
deflection of the galvanometer needle, in a direction opposite to the first.   
  
    Faraday decided it was not the existence of magnetic lines of force that produced a current, but the motion of those 
lines of force across the wire. He pictured matters after this fashion. When the current started in the first coil of wire, the 
magnetic field sprang into being, the lines of force expanding outward to fill space. As they cut across the wire in the 
second coil, a current was initiated, because the lines of force quickly expanded to the full and then stopped cutting across 
the wire, the current was only momentary. With the circuit closed and the magnetic field stationary, no further electric 
current in the second coil was to be expected. However, when he opened the first circuit, the magnetic field ceased and 
the lines of force collapsed inward again, momentarily setting up a current in a direction opposite to the first.   
  
    He showed this fact more plainly to himself (and to the audiences to whom he lectured) by inserting a magnet into a 
coil of wire that was attached to a galvanometer. While the magnet was being inserted, the galvanometer needle kicked in 



one direction; and while it was being withdrawn, it kicked in the other direction. While the magnet remained at rest 
within the coil at any stage of its insertion or withdrawal, there was no current in the coil. However, the current was also 
initiated in the coil if the magnet was held stationary and the coil was moved down over it or lifted oh again, it didn't 
matter, after all, whether the wire moved across the lines of force, or the lines of force moved across the wire.'   
  
    Faraday had indeed used magnetism to induce an electric cur- rent and had thus discovered electromagnetic induction. 
In the United States, Henry had made a similar discovery at about the same time, but Faraday's work was published first.   
  
    The production of an induced current is most easily visualized it one considers the space between the poles of a 
magnet, where lines of force move across the gap in straight lines from the north pole to the south pole, and imagines a 
single copper wire moving between those poles. (It makes no difference; by the way, whether the magnet in question is a 
permanent one or an electromagnet with the current on.)   
  
    If the wire were motionless or were moving parallel to the lines of force, there would be no induced current. If the wire 
moved in s direction that was not parallel to the lines of force, so that it cut across them, then there would be an induced 
current.   
  
    The size of the potential difference driving the induced current would depend upon the number of lines of force cut 
across per second, and this in turn would depend on a number of factors. First there is the velocity of the moving wire. 
The more rapidly the wire moves in any given direction not parallel to the lines of force, the greater the number of lines 
of force cut across per second and the greater the potential difference driving the induced current.   
  
    Again, there is the question of the direction of the motion of the wire. If the wire is moving in a direction perpendicular 
to the lines of force, then it is cutting across a certain number of lines of force per second. If the wire is moving, at the 
same speed, in a direction not quite perpendicular to the lines of force, it cuts across fewer of them per unit time, and the 
potential difference of the induced current is less intense. The greater the angle between the direction of motion and the 
perpendicular to the lines of force and the smaller the potential difference of the induced current. Finally, when the 
motion is in a direction 90 degree to the perpendicular that motion is actually parallel to the lines of force and there is no 
induced current at all.   
  
    In addition, if the wire is in coils, and each coil cuts across the lines of force, the potential difference driving the 
induced current is multiplied in intensity by the number of coils per unit length.   



  
    The direction of the induced current can be determined by using the right hand, according to a system first suggested 
by the English electrical engineer John Ambrose Fleming (1849-1945) and therefore called Fleming’s rule. It is applied 
without complication when the wire is moving in a direction perpendicular to that of the lines of force. To apply the rule, 
extend your thumb, index finger and middle finger so that each forms a right angle to the other two--that is, allowing the 
thumb to point upward, the fore- finger forward, and the middle finger leftward. If, then, the fore-finger is taken as 
pointing out the direction of the magnetic lines of force from north pole to south pole, and the thumb as pointing out the 
direction in which the wire moves, the middle finger will point out the direction (from positive pole to negative pole) of 
the induced current in the win.   
  
    Two months after his discovery of electromagnetic induction, Faraday took his next step. Since an electric current was 
produced when magnetic lines of force cut across an electrical conductor, how could he devise a method of cutting such 
lines continuously?   
  
    He set up a thin copper disk that could be turned on a shaft. Its outer rim passed between the poles of a strong magnet 
as the disk turned. As it passed between those poles, it continuously cut through magnetic lines of force, so that a 
potential difference was set up in the disk, a difference that maintained itself as long as the disk turned. Two wires ending 
in sliding contacts were attached to the disk. One contact brushed against the copper wheel as it turned, the other brushed 
against the shaft. The other ends of the wires were connected to a galvanometer.   
  
    Since the electric potential was highest at the rim when the material of the disk moved most rapidly and therefore cut 
across more lines of force per unit time, a maximum potential difference existed between that rim and the motionless 
shaft. An electric current flowed through the wires and galvanometer as long as the disk turned. Faraday was generating a 
current continuously, without benefit of chemical reactions, and had thus built the first electric generator.   
  
    The importance of the device was tremendous, for, in essence, it converted the energy of motion into electrical energy. 
A disk could be kept moving by a steam engine, for instance, at the expense of burning coal or oil (much cheaper than 
burning zinc), or by a turbine that could be turned by running water, so that streams and waterfalls could be made to 
produce electricity. It took fifty years to work out all the technical details that stood in the way of making the generator 
truly practical, but by the 1880's cheap electricity in quantity was a reality; and the electric light and indeed the 
electrification of society in general became possible. 
  



  
  
  

CHAPTER 13 

  

Alternating Current 
  
    The Armature   
  
    In modern generators, Faraday's copper disk turning between the poles of a magnet is replaced by coils of copper wire 
wound on an iron drum turning between the poles of an electromagnet. The turning coils make up the armature. To see 
what happens in this case, let's simplify matters as far as possible and consider a single rectangular loop of wire rotating 
between a north pole on the right and a south pole on the left.   
  
    Imagine such a rectangle oriented parallel to the lines of force (moving from right to left) and beginning to turn in such 
a fashion that the wire on the left side of the rectangle (the L wire) moves upward, across the lines of force, while the 
wire on the right side of the rectangle (the R wire) moves downward, across the lines of force.  
  
    Concentrate, to begin with, on the L wire and use the Fleming right-hand rule. Point your thumb upward, for that is the 
direction in which the L wire is moving. Point your forefinger left, for that is the direction of the magnet's south pole. 
Your middle finger points toward you, and that is the direction of the induced current in the L wire.  
  
    What about the R wire? Now the thumb must be pointed downward while the forefinger still points left. The middle 
finger points away from you and that is the direction of the induced current in the R wire. If the induced current is 
traveling toward you in the L wire and away from you in the R wire, you can see that it is actually going round and round 
the loop.   
  
    Next imagine that the L wire and R wire are both connected to separate "slip rings" (Ring A and Ring B, respectively), 
each of which is centered about the shaft that serves as an axis around which the loop rotates. The current would tend to 
flow from Ring B through the R wire into the L wire and back into Ring A. If one end of a circuit is connected to one ring 
by way of a brushing contact, and the other end of the same circuit to the other ring, the current generated in the turning 



armature would travel through the entire circuit.  
  
    But let's consider the rectangular loop a bit longer. Since the loop is rotating, the L wire and R wire cannot move up 
and down, respectively, indefinitely. They are, in fact, constantly changing direction. As the L wire moves up, it curves to 
the right and moves at a smaller angle to the lines of force, so that the intensity of the induced current decreases. Precisely 
the same happens to the R wire, for as it moves downward, it curves to the left and moves also at a smaller angle to the 
lines of force.  
  
    The current continues to decrease as the loop turns until the loop has completed a right angle turn, so that the 1 wire is 
on top and the R wire on bottom. The L wire is now moving right, parallel to the lines of force, while the R wire is 
moving left, also parallel to the lines of force. The intensity of the induced current has declined to zero. As the loop 
continues to rotate, the L wire cuts down into the lines of force, while the R wire cuts up into them. The two wires have 
now changed places, the L wire becoming the R wire, and the R wire becoming the L wire.  
  
    The wires, despite this change of place (as far as the direction of the induced current is concerned), are still connected 
to the same slip rings. This means that as the armature makes one complete rotation, the current flows from Ring B to 
Ring A for half the time and from Ring A to Ring B for the other half. This repeats itself in the next rotation, and the 
next, and the next. Current produced in this manner is therefore alternating current (usually abbreviated AC) and moves 
backward and forward perpetually. One rotation of the loop produces one back and forth movement of the current--that 
is, one cycle. If the loop rotates sixty times a second we have a 60-cycle alternating current.  
  
    Nor is the current steady in intensity during the period when it is moving in one particular direction. During one 
rotation of the loop, the current intensity begins at zero, when the moving wires (top and bottom) are moving parallel to 
the lines of force; it rises smoothly to a maximum, when the wires (right and left) are moving perpendicular to the lines of 
force, and then drops just as smoothly to zero again, when the wires (bottom and top) are moving parallel to the lines of 
force once more.  
  
    As the loop continues turning, the current changes direction, and we can now imagine the flow to be less than zero-that 
is, we can decide to let the current intensity be measured in positive numbers when its Bow is in one direction and in 
negative numbers when its flow is in the other. Therefore, after the intensity has dropped to zero, it continues smoothly 
dropping to a minimum when the wires (left and right) are moving perpendicular to the lines of force; and it rises 
smoothly to zero again when the wires (top and bottom) are moving parallel to the lines of force once more. This 



completes one rotation, and the cycle begins again.  
  
   If, for convenience, we imagine the maximum current intensity to be 1 ampere, then in the first quarter of the rotation of 
the loop the intensity changes from 0 to + 1; in the second quarter from +1 to 0; in the third quarter from O to -1; and in 
the fourth quarter from -1 to 0. If this change in intensity is plotted against time, there is a smoothly rising and falling 
wave, endlessly repeated, which mathematicians call a sine curve.  
  
    A generator can easily be modified in such a way as to make it produce a current that flows through a circuit in one 
direction only. This would be a direct current (usually abbreviated DC), and it is this type of current that was first dealt 
with by Volta and which is always produced by chemical cells.  
  
    Suppose the two ends of our rectangular loop are attached to "half-rings" which adjoin each other around the shaft 
serving as axis of rotation but which don't touch. The L wire is attached to one half-ring and the R wire to the other. The 
brush contact of one end of the circuit touches one half-ring; the brush contact of the other touches the second halt-ring.  
  
    During the first half of the rotation of the armature, the current flows, let us say, from Half-Ring A to Half-Ring B, 
During the second half, the current reverses itself and Bows from Half-Ring B to Half-Ring A. However, every time the 
armature goes through a halt-rotation, the half-rings change places. It one brush contact is touching the positive half-ring, 
the negative half- ring turns into place just as it becomes positive, and leaves its place just as it begins to turn negative 
again. In other words, the first brush contact is touching each half-ring in turn, always when the rings are in the positive 
portion of their cycle; the other brush contact always touches the half-rings when they are negative. The current may 
change direction in the armature, but it Bows in one constant direction in the attached circuit.  
  
    The intensity still rises and falls, to be sure, from 0 to +1 to 0 to +1, and so on. By increasing the number of loops and 
splitting the rings into smaller segments, these variations in intensity can be minimized, and a reasonably constant direct 
current can be produced.  
  
    The AC generator is simpler in design than the DC generator, but alternating current had to overcome a number of 
objections before it could be generally accepted. Edison, for instance, was a great proponent of direct current and, during 
the closing decades of the nineteenth century, fought the use of alternating current bitterly. (The great proponent of 
alternating current was the American inventor George Westinghouse [1846-1914]).  
  



    In considering this competition between the two types of current, it may seem natural at first that DC should be 
favored. In fact, AC may seem useless on the face of it. After all, a direct current is "getting somewhere" and is therefore 
useful, while an alternating current "isn't getting anywhere" and therefore can't be useful--or so it might seem.  
  
    Yet the "isn't getting anywhere" feeling is wrong. It is perhaps the result of a false analogy with water running through 
a pipe· We usually want the water to get somewhere--to run out of the pipe, for instance, so that we can use it for 
drinking, washing, cooling, irrigating, fire fighting, and so on.  
  
   But electricity never flows out of a wire in ordinary electrical appliances. It "isn't getting anywhere" under any circum- 
stances. Direct current may go in one direction only, but it goes round and round in a circle and that is no more "getting 
any- where" than moving backward and forward in one place.  
  
    There are times when DC is indeed necessary. In charging storage batteries, for instance, you want the current to move 
always in the direction opposite to that in which the current moves when the storage battery is discharging On the other 
hand, there are times when it doesn't matter whether current is direct or alternating. For instance, a toaster or an 
incandescent bulb works as it does simply because current forcing its way through a resistance heats up that portion of the 
circuit (to a red-heat in the toaster and to a white-heat in the bulb). The heating effect does not depend upon the direction 
in which the current is flowing, or even on whether it continually changes direction. By analogy, you can grow heated 
and sweaty if you run a mile in a straight line, or on a small circular track, or backward and forward in a living room. The 
heating effect doesn't depend on "getting anywhere."  
  
       A more serious objection to AC, however, was that the mathematical analysis of its behavior was more complicated 
than was that of DC circuits. For the proper design of AC circuits, this mathematical analysis first had to be made and 
understood. Until then, the circuits were continuously plagued by lowered efficiency.  
  
Impedance  
  
     A situation in which the current intensity and the potential difference are changing constantly raises important 
questions-- for instance, as to how to make even the simplest calculations involving alternating current. When a formula 
includes I (current intensity) or E (potential difference), one is entitled to ask what value to insert when an alternating 
current has no set value for either quantity, but a value that constantly varies from zero to some maximum value I(max)... 
and E(max)), first in one direction and then in the other.  



  
    One must then judge these properties of the alternating current by the effects they produce, rather than by their sheer 
numerical values. It can be shown, for instance, that an alternating current can, in heat production and in other uses, have 
the same effect as a direct current with definite values of I and E. The values of I and E therefore represent the effective 
current intensity and the effective potential difference of the alternating current, and it is these effective values that I and 
E symbolize in alternating currents. The effective values are related to the maximum values as follows:  
  
  I = I(max) / 1.44                                 (Equation 13-1)   
  
 E = E(max) / 1.44                                (Equation 13-2)  
  
One might suppose that having defined I and E for alternating currents one could proceed at once to resistance, 
representing that by the ratio of E/I (the current intensity produced by a given potential difference) in accordance with 
Ohm's law. Here, however, a complication arises. A circuit that under direct current would have a low resistance, as 
indicated by the fact that a high current intensity would be produced by a given potential difference, would under 
alternating current have a much greater resistance, as indicated by the low current intensity produced by the same 
potential difference. Apparently, under alternating current a circuit possesses some resisting factor other than the ordinary 
resistance of the materials making up the circuit.  
  
    To see why this is so, let's go back to Faraday's first experiments on electromagnetic induction. There, as the electric 
current was initiated in one coil, a magnetic held was produced and the expanding lines of force cut across a second coil, 
inducing a potential difference and, therefore, an electric current in a particular direction in that second coil. When the 
electric current was stopped in the first coil, the collapsing lines of force of the dying magnetic field cut across the second 
coil again, inducing a potential difference of reversed sign and, therefore, an electric current in the opposite direction in 
that second coil.  
  
   So far, so good. However, it must be noted that when current starts flowing in a coil, so that magnetic lines of force 
spread outward, they not only cut across other coils in the neighborhood be also cut across the very coils that initiate the 
magnetic field. (The lines of force spreading out from one loop in the coils cut through all its neighbors.) Again, when the 
current in a coil is cut off, the lines of force of the collapsing magnetic held cut across the very coils in which the current 
has been cut oh. As current starts or stops in the coil, an induced current is set up in that same coil. This is called self-
induction or inductance, and it was discovered by Henry in 1832. (Here Henry announced his discovery just ahead of 



Faraday, who made the same discovery independently; Faraday, you will remember, just anticipated Henry in connection 
with electromagnetic induction itself.)   
  
    Almost simultaneously with Henry and Faraday, a Russian physicist, Heinrich Friedrich Emil Lenz  (1804-1865), 
studied inductance. He was the first to make the important generalization that induced potential difference set up in a 
circuit always acts to oppose the change that produced it. This is called Lenz's law.   
  
    Thus, when a current in a coil is initiated by closing a circuit, one would expect that the current intensity would rise 
instantly to its expected level. However, as it rises it sets up an induced potential difference, which tends to produce a 
current in the direction opposed to that which is building up. This opposition by inductance causes the primary current in 
the circuit to rise to its expected value with comparative slowness. 
  
    Again, if the current in a coil is stopped by breaking a circuit, one would expect the current intensity to drop to zero at 
once. Instead, the breaking of the circuit sets up an induced potential, which, again, opposes the change and tends to keep 
the current flowing. The current intensity therefore drops to zero with comparative slowness. This opposed potential 
difference produced by self-induction is often referred to as back-voltage.   
  
    In direct current, this opposing effect of inductance is not terribly important, since it makes itself felt only in the 
moment of starting and stopping a current, when lines of force are moving outward or inward. As long as the current 
Rows steadily in a single direction, there is no change in the magnetic lines of force, no induced current, and no 
interference with the primary current   
  
    How different for alternating current, however, which is always changing, so that magnetic lines of force are always 
cutting the coils as they are continually moving either outward or inward. Here an induced potential difference is 
constantly in being and is constantly opposed to the primary potential difference, reducing its value greatly. Thus, where 
a given potential difference will drive a high (direct) current intensity through a circuit, under AC conditions it will be 
largely neutralized by inductance, and will only a small (alternating) current intensity through   
  
    The unit of inductance is the henry, in honor of the physicist. When a current intensity in a circuit is changing at the 
rate of 1 ampere per second and, in the process, induces an opposed potential difference of 1 volt, the circuit is said to 
have an inductance of 1 henry. By this definition, 1 henry is equal to 1 (volt per ampere) per second, or 1 volt-second per 
ampere (volt-sec/amp).   



  
    The resistance to current flow produced by self-induction depends not only on the value of the inductance itself but 
also on the frequency of the alternating current, since with increasing frequency, the rate of change in current intensity 
with time (amperes per second) increases. Therefore, the more cycles per second, the greater the resistance to current 
flow by a given inductance. Suppose we symbolize inductance as L and the frequency of the alternating current as f. The 
resistance produced by these two factors is called the inductive reactance and is symbolized as X(L) turns out that:  
  
X(L)  =  2 (pi) f L                                                         (Equation 13-3)   
  
    If L is measured in henrys, that is in volt-seconds per ampere, and f is measured in per-second units, then the units of 
X, must be (volt-seconds per ampere) per second. The seconds cancel and the units become simply volts per ampere, 
which defines the ohm. In other words, the unit of inductive reactance is the ohm, as it is of ordinary resistance.   
  
    The ordinary resistance (R) and the inductive reactance (X,) both contribute to the determination of the current 
intensity placed in an alternating current circuit by a given potential difference. Together they make up the impedance 
(Z). It is not a question of merely adding resistance and inductive reactance, how- ever. Impedance is determined by the 
following equation:  
  

Z   = square root of [ R2  + X(L) 2 ]           (Equation 13-4)  

  
In alternating currents, it is impedance that plays the role of ordinary resistance in direct currents. In other words, the AC 
equivalent of Ohm's law would be IZ=E, or I=E/Z, or Z= I/E.   
  
    Reactance is produced in slightly different fashion by condensers. A condenser in a direct current circuit acts as an air 
gap and, at all reasonable potential differences, prevents a current from flowing. In an alternating current circuit, 
however, a condenser does not keep a current from flowing. To be sure, the current does not flow across the air gap, but it 
surges back and forth, piling up electrons first in one plate of the condenser, then in the other. In the passage back and 
forth from one plate to the other, the current passes through an appliance--let us say an electric light--which proceeds to 
glow. The filament reacts to the flow of current through itself and not to the fact that there might be another portion of the 
circuit somewhere else through which there is no flow of current.   
  
    The greater the capacitance of a condenser, the more intense the current that sloshes back and forth, because a greater 



charge can be piled onto first one plate then the other. Another way of putting this is that the greater the capacitance of a 
condenser, the smaller the opposition to the current flow, since there is more room for the electrons on the place and 
therefore less of a pile-up of negative-negative repulsion to oppose a continued flow.   
  
    This opposition to a continued flow is the capacitive reactance X(c), which is inversely proportional to the capacitance 
(C) of the condenser. The capacitive reactance is also inversely proportional to the frequency (f) of the current, for the 
more   rapidly the current changes direction, the less likely is either plate of the condenser to get an oversupply of 
electrons during the course of one half-cycle, and the smaller the negative-negative repulsion set up to oppose the current 
flow. (In other words, raising the frequency lowers the capacitive reactance, though it raises the inductive reactance.) The 
inverse relationship can be expressed as follows:  
  
X(c)   =   1 / [2 (pi) f C]                                                    (Equation 13-5)   
  
    The capacitance (C) is measured in farads--that is in coulombs per volt or, what is equivalent, in ampere-seconds per 
volt. Since the unit of frequency (f) are per-seconds, the units of 2(pi)fC are ampere-seconds per volt per seconds, or 
(with seconds canceling) amperes per volt. The units of capacitive reactance (X,) are the reciprocal of this--that is, volts 
per ampere, or ohms. Thus capacitive reactance, like inductive reactance, is a form of resistance in the circuit.   
  
    Capacitive reactance and inductive reactance bath act to reduce the current intensity in an AC circuit under a given 
potential difference if either one is present singly. However, they do so in opposite manners.   
  
    Under simplest circumstances, the current intensity and potential difference of an alternating current both rise and fall 
in step as they move along the sine curve. Both are zero at the same time; both are at maximum crest or at minimum 
trough at the same time. An inductive reactance, however, causes the current intensity to lag; to reach its maximum (or 
minimum, or zero point) only a perceptible interval after the potential difference has reached it. A capacitive reactance, 
on the other hand, causes the current intensity to lead; to rise and fall a perceptible period of time ahead of the rise and 
fall in potential difference. In either case, current intensity and potential difference are out of phase, and energy is lost.   
  
    Yet if there is both a capacitive reactance and an inductive reactance in the circuit, the effect of one is to cancel that of 
the other. The lead of the capacitive reactance must be subtracted from the lag of the inductive reactance. The total 
impedance can be expressed as follows:  
  



Z = square root of [ R2  +{X(c) - X(c)} 2]         (Equation 136)  

  
     If the circuit is so arranged that the capacitive reactance equals the inductive reactance, then X(L) – X (c )  = 0; and Z 
= R. The impedance of the alternating current circuit is then no greater than the ordinary resistance of an analogous direct 
current circuit would be. Such an alternating current circuit is said to be in resonance. Notice that the impedance can 
never be less than the resistance. If the capacitive reactance is greater than the inductive reactance, then X(L) – X(c ) is 
indeed a negative number, but its square is positive and when that is added to the square of the resistance and the square 
root of the sum is taken, the final value of Z will be greater than that of R.   
  
    This represents only the merest beginnings of the complications of AC circuitry. A good deal of the full treatment was 
worked out at the beginning of the twentieth century by the German-American electrical engineer Charles Proteus 
Steinnetz (1865-1923), and it was only thereafter that alternating currents could be properly exploited.  
  
Transformers   
  
    Even before Steinmetz had rationalized the use of alternating circuits--and despite the formidable nature of the 
difficulties, which, in the absence of such rationalization, plagued the circuit designers; and despite also, the formidable 
opposition of men such as Edison and Kelvin--the drive for the use of alternating current carried through to victory. The 
reason for this was that in one respect, that involving the transmission of electric power over long distances, alternating 
current was supreme over direct current.   
  
    The power of an electric current is measured in wads and is equal to the volts of potential difference times the amperes 
al current intensity. (Strictly speaking, this is true only in the absence of reactance. Where inductive reactance is present, 
the power is decreased by a particular power factor. However, this can be reduced or even eliminated by the addition of a 
proper capacitive reactance, so this need not bother us.)   
  
    This means that different combinations of volts and amperes can represent an electric current of the same power, For 
instance, a given appliance might carry one ampere at 120 volts, or two amperes at 60 volts, or five amperes at 24 volts, 
or twelve amperes at 10 volts, In each case, the power would be the same--120-watts.   
  
    There are advantages to having a given electric power appear in a high-volt, low-ampere arrangement under some 
conditions and in a low-volt, high-ampere arrangement under other conditions. In the former case, the low current 



intensity makes it possible to use relatively thin copper wire in the circuit without fear of undue heating effects. In the 
latter case, the low potential difference means that there is a smaller chance of breaking down the insulation or producing 
a short circuit.   
  
    And then there is the previously mentioned problem of transmitting electric currents over long distances. Much of the 
convenience of electricity would be lost if it could only be used in the near neighborhood of a generator. Yet if the current 
is sent through wires over considerable distances, so much energy is likely to be lost in the form of heat that either we 
have too little, electricity at the other end to bother with, or we must reduce the heat-loss by using wire so thick as to be 
uneconomical. The heat produced, however, is proportional to the square of the current intensity. Therefore, if we reduce 
the current intensity to a very low quantity, while simultaneously raising the potential difference to a correspondingly 
high value (in order to keep the total electric power unchanged), much less electricity would be lost as best.   
  
    Naturally, it is not very likely that this arrangement of tiny current intensity combined with huge potential differences 
would be suitable for use in ordinary appliances. Consequently, we want a situation in which the same power can be at 
very high voltages for transmission and at very low voltages for use.   
  
    With direct current, it is highly impractical to attempt to change the potential difference of a current--now up, now 
down --to suit changing needs. In alternating current, however, it is easy to do this by means of a transformer (a device 
that "transforms" the volt-ampere relationship). In essence, it was a transformer that Faraday had invented when in 1831 
he made use of an iron ring with two sets of wire coils on it in his attempt to induce an electric current.   
  
    Faraday found that when a direct electric current was put through one of the coils (the primary), no current was 
induced .in the other coil (the secondary), except at the moments when the current was initiated or ended. It was only then 
that magnetic lines of force swept over the secondary.   
  
    Where the current in the primary is an alternating current, however, the current intensity is always either rising or 
falling; and the intensity of the magnetic field through the iron ring is always either rising or falling. The lines of force 
expand outward and collapse inward over and over, and as they do so, they cut across the secondary, producing an 
alternating current that keeps in perfect step with the alternating current in the primary.   
  
    The potential difference of the induced current depends on the number of coils in the secondary as compared with the 
number in the primary. Thus, if the current in the primary has a potential difference of 120 volts and if the secondary 



contains ten times as many turns of wire as does the primary, then the induced current will have a potential difference of 
1200 volts. This is an example of a step-up transformer. If the induced current produced by such a transformer is used to 
power the primary in another transformer in which the secondary now has only one-tenth the number of coils that the 
primary has, the new induced current is back at 120 volts. The second transformer is a step- down transformer.   
  
    The induced current (if we ignore negligible losses in the form of heat) must have the same power as the original 
current. Otherwise, energy will either be created or destroyed in the process, and this is inadmissable. This means that as 
the potential difference goes up, the current intensity must go down, and vice versa. If a one-ampere current at 120 volts 
activates a step-up transformer in which the secondary has a hundred times the number of coils that the primary has, the 
induced current will have a potential difference of 12,000 volts and a current intensity of 1/100 ampere. In both primary 
and secondary, the power will be 120 watts.   
  
    If alternating current generators are used, there is no difficulty at all in altering voltages by means of transformers. A 
step-up transformer in particular will serve to raise the potential difference to great heights and the current intensity to 
trivial values. Such a current can be transmitted over long distances through wires that are not excessively thick, with 
little heat loss, thanks to the low current intensity. Thanks to the high potential difference, however, due full power of the 
electric current is nevertheless being transmitted.   
  
    When the current arrives at the point where it is to be used, a step down transformer will convert it to a lower potential 
difference and a higher current intensity for use in household appliances or industrial machines. A particular appliance or 
machine may need low potential differences at one point and high potential differences at the other, and each can be 
supplied by the use of appropriate transformers. Long-distance transmission through high-voltage alternating current was 
made practical by the work of the Croatian-American electrical engineer Nikola Tesla (1857-1943). He was backed by 
Westinghouse, who in 1893 won the right to set up at Niagara   Falls a hydroelectric station (where the power of falling 
water would spin turbines that would rum armatures and produce electricity) for the production and transmission of 
alternating current.   
  
    Since then, AC current has come into virtually universal use, and this is responsible for the great flexibility and 
versatility of electricity as a form of useful energy.   
  
    Motors   
  



    Thanks to the development of the generator, mechanical energy could be converted to electrical energy, and it was 
possible to have large supplies of electricity arising, indirectly, out of burning coal or falling water. Thanks to the 
development of alternating current and transformers, this electrical energy could be transported over long distances and 
conducted into every home or factory.   
  
    However, once in the home or factory, what was the electricity to do there? Fortunately, by the time electricity could 
be produced and transported in quantity, the question of the manner of its consumption had already been answered.   
  
    That answer arose out of the reversal of a known effect. This happens frequently in science. If deforming the shape of a 
crystal produces a potential difference, then applying a potential difference to opposite sides of a crystal will deform its 
shape. It an electric current creates a magnetic field, then a magnetic field can be made to produce an electric current.   
  
    It is not surprising, therefore, that if mechanical energy can be convened into electrical energy when a conductor is 
made to move and cut across lines of magnetic force, electrical energy can be converted into mechanical energy, causing 
a conductor to move sad cut across lines of magnetic force.   
  
    Imagine a copper wire between the poles of a magnet, north pole on the right and south pole on the left. If the copper 
wire is moved upward, then by Fleming's right-hand rule we know that a current will be induced in the direction toward 
us.   
  
    Suppose, however, that we keep the wire motionless in mid- field, so that no current is induced in it. Suppose that we 
then ' send a current through it from a battery, that current moving toward us. The current-carrying wire now sets up a 
magnetic field of its own. Since the current is coming toward us, the lines of force run in counterclockwise circles about 
themselves. Above the wire, those counterclockwise lines of force run in the same direction as do the straight lines of 
force from the north pole to the south pole of the magnet. The two add together, so that the magnetic flux is increased. 
Below the wire, the counterclockwise lines of force run in the direction opposed to the lines of force of the magnet, H) 
that there is a canceling of effect and the flux density is decreased. With a high-flux density above the wire, and a low-
flux density below it, the wire is pushed downward by the natural tendency of the lines of force to "even out." If the 
current in the wire is moving away from us, so that its lines of force run in clockwise circles, the magnetic flux density 
will be greater below and the wire will be pushed upward.   
  
 To summarize, consider a magnet with lines of force running from right to left:  



  
If a wire without current is moved upwards, current toward you is induced. 
  
If a wire without current is moved downwards, current away from you is induced. 
  
If a wire contains current flowing toward you, motion downward is induced. 
  
If a wire contains current flowing away from you, motion upward is induced. 
 
In the first two cases, current is generated out of motion and the device is a generator. In the last two cases, motion us 
manufactured out of current and the device is a motor. (It is the same device in either case, actually, but it is run 
“forward” in one case and “backward” in the other.)  
   Notice that in the generator, current toward is with motion upward, and current away with motion id the motor, current 
toward is associated with motion downward, and current away with motion upward. Therefore, in determining the 
relationship of direction of lines of force, direction of current, and direction of motion, one must, in the case of a motor, 
use some device that is just the opposite of the device used in the case of the generator.  
  
   For the generator we used the Fleming right-hand rule, and since we have an opposite limb in the shape of the left hand, 
we use a left-hand rule (with thumb, forefinger, and middle finger held at mutual right angles) to relate the various 
directions in a motor. As in the right-hand rule, we allow the forefinger to point in the direction of the lines of force, i.e., 
toward the south pole. The middle finger points in the direction the current is flowing, i.e., toward the negative pole. The 
thumb will then automatically point in the direction of the motion imposed upon the wire.   
  
    Now let us pass on to a loop of wire between the poles of a magnet. If a mechanical rotation is imposed upon it, an 
electric current is induced in the loop. Consequently, it is only natural, that if an electric current is put through the wire 
from an outside source, a mechanical rotation will be induced. (Without going into details, such mechanical rotation can 
be brought about by both direct current and alternating current. Some motors are designed to run on either.)   
  
    You can therefore have two essentially identical devices. The first used as a generator, will convert the heat energy of 
burning coal into the mechanical energy of a turning armature and convert that in turn into electrical energy. The 
electrical energy so produced is poured into the second device, used as a motor, and there it is convened into the 
mechanical energy of a turning armature. Of course, the generator can be large, supplying enough electric energy to run 



numerous small motors.   
  
    Once large generators made it practical to produce large quantities of electricity, and transformers made it practical to 
transport large quantities of electricity, it was only necessary that this electricity be conducted to the millions of motors in 
homes and factories. The necessary motors were waiting to be used in this fashion; they had been waiting for some half a 
century, for the first practical motor had been devised by Henry in 1831.   
  
    Turning wheels had been used to supply mechanical energy as far back as earliest historic times, for rotational motion 
is not only useful in itself but it can easily be converted into back-and- forth motion by proper mechanical connections. 
Through most of man's history, wheels had been turned by the muscle of men and animals, by the action of falling water, 
and by blowing wind. Muscles, however, were weak and easily tired, water fell only in certain regions, and the wind was 
always uncertain,   
  
    After the invention of the steam engine wheels could be turned by the application of steam power. However the bulky 
engines had to exist on the spot when the wheels turned and could profitably be set up only in factories or on large 
contrivances such as locomotives and ships. They were therefore profitably used only for large-scale work. Small-scale 
steam engines for home use seemed out of the question. Furthermore, it took time to start steam engines, for large 
quantities of water had first to be brought to a boil.   
  
    With the motor, however, an independent wheel became possible. The generator, as the source of the energy, did not 
have to be on the premises or anywhere near them. Moreover, electric motors could start at the flick of one switch and 
stop at the hick of another. Motors were versatile in the extreme, and wheels of any size and power could be turned. Huge 
motors were designed to move streetcars or industrial machinery, and tiny motors now power typewriters, shavers, and 
toothbrushes.   
  
    Thanks to Faraday and Henry (with assists from Tesla and Steinmetz), the lives of the citizens of the industrial portions 
of the world have thus come to be composed, in large measure, of a complex heap of electrical gadgetry. 
  
  
  

CHAPTER 14 



  

Electromagnetic Radiation 
  
    Maxwell’s Equations 
  
 By mid-nineteenth century, the connection between electricity and magnetism was well established and being put to 
good use. The generator and the motor had been invented, and both depended on the interrelationship of electricity and 
magnetism.   
  
    Theory lagged behind practice, however. Faraday, for instance, perhaps the greatest electrical innovator of all, was 
completely innocent of mathematics, and he developed his notion of lines of force in a remarkably unsophisticated way, 
picturing them almost like rubber bands.'   
  
    In the 1860's, Maxwell, a great admirer of Faraday, set about supplying the mathematical analysis of the 
interrelationship of electricity and magnetism in order to round out Faraday's non-mathematical treatment.   
  
    To describe the manner in which an electric current in- variably produced a magnetic field, and in which a magnet 
could be made to produce an electric current, as well as how both electric charges and magnetic poles could set up fields 
consisting of lines of force, in 1864 Maxwell devised a set of four comparatively simple equations, known ever since as 
Maxwell's equations. From these, it proved possible to deduce the nature of the interrelationships of electricity and 
magnetism under all possible conditions.   
  
    In order for the equations to be valid, it seemed impossible to consider an electric field or a magnetic field in isolation. 
The two were always present together, directed at mutual right angles, so that there was a single electromagnetic field.   
  
    Furthermore, in considering the implications of his equations, Maxwell found that a changing electric field had to 
induce a changing magnetic field, which in turn had to induce a changing electric field, and so on; the two leapfrogged, 
so to speak, and the held progressed outward in all directions. The result was a radiation in the properties of a waveform. 
In short, Maxwell predicted the existence of electromagnetic waves with frequencies equal to that in which the 
electromagnetic field waxed and waned. 
  



    It was even possible for Maxwell to calculate the velocity at which such an electromagnetic wave would have to move. 
He did this by taking into consideration the ratio of certain corresponding values in the equations describing the force 
between electric charges and the force between magnetic poles. This ratio turned out to have the value of 300,000 
kilometers per second:   
  
    But this was equal to the velocity of light, and Maxwell could not accept that as a mere coincidence. Electromagnetic 
radiation was not a mere phantom of his equations but had a real existence. In fact, light must itself be an electromagnetic 
radiation.  
  
    Maxwell's equations served several general functions. First, they did for the field-view of the universe what Newton's 
laws of motion had done for the mechanist-view of the universe.   
  
    Indeed, Maxwell’s equations were more successful than Newton's laws. The latter were shown to be but 
approximations that held for low velocities and short distances. They required the modification of Einstein's broader 
relativistic viewpoint if they were to be made to apply with complete generality. Maxwell's equations, on the other hand, 
survived all the changes introduced by relativity and the quantum theory; they are as valid in the light of present 
knowledge as they were when they were first introduced a century ago.   
  
    Secondly, Maxwell's equations, in conjunction with the later development of the quantum theory, seem at last to supply 
us with a satisfactory understanding of the nature of light (a question that has occupied a major portion of this volume and 
serves as its central question). Earlier I said that even granting the particle-like aspects of light there remained the wave-
like aspects, and questioned what these might be. As we see now, the wave-like aspects are the oscillating values of the 
electro-magnetic field. The electric and magnetic components of that field are set at mutual right angles and the whole 
wave progresses in a direction at right angles to both.  
  
    To Maxwell, wedded to the ether hypothesis, it seemed the oscillation of the electromagnetic field consisted of wave-
like distortions of the ether. However, Maxwell's equations rose superior even to Maxwell. Though the ether hypothesis 
passed away, the electromagnetic wave remained, for now it became possible to view the oscillating field as oscillating 
changes in the geometry of space. This required the presence of no matter. Nothing "had to wave" in order to form light 
waves.   
  
    Of the four different phenomena which, from Newton's time onward, have threatened to involve action-at-a-distance, 



no less than three, thanks to Maxwell's equations, were shown to be different aspects of a single phenomenon. Electricity, 
magnetism and light were all included in the electromagnetic field. Only the gravitational force remained outside. 
Maxwell, recognizing the important differences between gravity and electromagnetism, made no attempt to include the 
gravitational field in his equations. Since his time, some attempts have been made, notably by Einstein in the latter half of 
his life. Einstein's conclusions, however, have not been accepted by physicists generally, and the question of a "unified 
field theory" remains open.   
  
    It seemed to Maxwell that the processes that gave rise to electromagnetic radiation could well serve to produce waves 
of any frequency at all and not merely those of light and its near neighbors, ultraviolet and infrared radiation. He 
predicted, therefore, that electromagnetic radiation, in all essentials similar to light, could exist at frequencies far below 
and far above those of light.   
  
    Unfortunately, Maxwell did not live to see this prediction verified, for he died of cancer in 1879 at the comparatively 
early age of 48. Only nine years after that, in 1888, the German physicist Heinrich Rudolf Hertz (1857-1894) discovered 
electromagnetic radiation of very low frequency--radiation that we now call radio waves. This completely bore out 
Maxwell's prediction and was accepted as evidence for the validity of Maxwell's equations. In 1895, another German 
physicist, Wilhelm Konrad Rontgen (1845-1923), discovered what turned out to be electromagnetic radiation of very high 
frequency: radiation we now call X rays.   
  
    The decades of the 1880's and 1890's also saw a fundamental advance made in the study of electricity. Electric currents 
were driven through near-vacuums, and electrons, instead of remaining concealed in metal wires or being considered 
attachments to drifting atoms and groups of atoms in solution, made their appearance as panicles in their own right.   
  
    The study of the new, panicles and radiations introduced a virtual revolution in physics and electrical technology--one 
so intense that it has been referred to as the Second Scientific Revolution (the First, of course, being that initiated by 
Galileo).   
  
    It is with the Second Scientific Revolution that the third volume of this book will deal. 
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